• Title/Summary/Keyword: CMAQ/WRF

Search Result 40, Processing Time 0.027 seconds

Analysis of PM10 Reduction Effects with Artificial Rain Enhancement Using Numerical Models (수치모델을 이용한 인공증우에 따른 PM10 저감효과 분석)

  • Lim, Yun-Kyu;Kim, Bu-Yo;Chang, Ki-Ho;Cha, Joo Wan;Lee, Yong Hee
    • Atmosphere
    • /
    • v.32 no.4
    • /
    • pp.341-351
    • /
    • 2022
  • Recently, interest in the possibility of a washout effect using artificial rain enhancement technology to reduce high-concentration fine dust is growing. Therefore, in this study, the reduction rate of PM10 concentration according to the amount of artificial rain enhancement was calculated during Asian Dust event which occurred over the Korean Peninsula on March 29, 2021 using air quality model [i.e., Community Multiscale Air Quality (CMAQ)] combined with the mesoscale model for artificial rain enhancement (i.e., WRF-MMS). According to WRF-MMS, the washout effect lasted 5 hours, and the maximum precipitation rate was calculated to be 1.5 mm hr-1. According the CMAQ results, the PM10 reduction rate was up to 22%, and the affected area was calculated to be 6.4 times greater than that of the artificial rain enhancement area. Even if the maximum amount of precipitation per hour is lowered to 0.8 mm hr-1 (about 50% level), the PM10 reduction rate appears to be up to 16%. In other words, it is believed that this technique can be used as a direct method for reducing high-concentration fine dust even when the artificial rain enhancement effect is weak.

A Study on the Application of Local-scale Air Mass Recirculation Factor to High-concentration PM2.5 Episode in Coastal Areas (연안 지역 고농도 PM2.5 사례에 대한 국지 규모 공기괴 재순환 지수 적용 연구)

  • Jung-woo Yoo;Ji Seon Kim;Eun Ji Kim;Soon-Hwan Lee
    • Journal of Environmental Science International
    • /
    • v.32 no.8
    • /
    • pp.521-531
    • /
    • 2023
  • This study analyzed the impact of recirculation on high-concentration PM2.5 in the coastal area. Through the analysis of observational data, it was observed that the development of sea breeze led to an increase in PM2.5 and SO42- concentrations. Hysplit backward trajectory analysis confirmed the occurrence of air mass recirculation. Results from WRF and CMAQ numerical simulations indicated that pollutants transported from land to sea during the night were re-transported to the land by daytime sea breeze, leading to high-concentration PM2.5 in Busan. To quantitatively investigate the recirculation a recirculation factor (RF) was calculated, showing an increase in RF values during high-concentration PM2.5 episodes. However, the RF values varied slightly depending on the time resolution of meteorological data used for the calculations. This variation was attributed to the terrain characteristics at observation sites. Additionally, during long-range transported days leading to nationwide high-concentration PM2.5 events, synoptic-scale circulation dominated, resulting in weaker correlation between PM2.5 concentration and RF values. This study enhances the understanding of the influence of recirculation on air pollution. However, it is important to consider the impact of temporal resolution and terrain characteristics when using RF for evaluating recirculation during episodes of air pollution.

Assessment of Emission Data for Improvement of Air Quality Simulation in Ulsan (울산 지역 대기질 모의능력 개선을 위한 배출량자료 평가)

  • Jo, Yu-Jin;Kim, Cheol-Hee
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.5
    • /
    • pp.456-471
    • /
    • 2015
  • Emission source term is one of the strong controlling factors for the air quality simulation capability, particularly over the urban area. Ulsan is an industrial area and frequently required to simulate for environmental assessment. In this study, two CAPSS (Clean Air Policy Support System) emission data; CAPSS-2003 and CAPSS-2010 in Ulsan, were employed as an input data for WRF-CMAQ air quality model for emission assessment. The simulated results were compared with observations for the local emission dominant synoptic conditions which had negative vorticities and lower geostrophic wind speed at 850hPa weather maps. The measurements of CO, $NO_2$, $SO_2$ and $PM_{10}$ concentrations were compared with simulations and the 'scaling factors' of emissions for CO, $NO_2$, $SO_2$, and $PM_{10}$ were suggested in in aggregative and quantitative manner. The results showed that CAPSS-2003 showed no critical discrepancies of CO and $NO_2$ observations with simulations, while $SO_2$ was overestimated by a factor of more than 12, while $PM_{10}$ was underestimated by a factor of more than 20 times. However, CAPSS-2010 case showed that $SO_2$ and $PM_{10}$ emission were much more improved than CAPSS-2003. However, $SO_2$ was still overestimated by a factor of more than 2, and $PM_{10}$ underestimated by a factor of 5, while there was no significant improvement for CO and $NO_2$ emission. The estimated factors identified in this study can be used as'scaling factors'for optimizing the emissions of air pollutants, particularly $SO_2$ and $PM_{10}$ for the realistic air quality simulation in Ulsan.

Analysis of PM2.5 Concentration and Contribution Characteristics in South Korea according to Seasonal Weather Patternsin East Asia: Focusing on the Intensive Measurement Periodsin 2015 (동아시아 지역의 계절별 기상패턴에 따른 우리나라 PM2.5 농도 및 기여도 특성 분석: 2015년 집중측정 기간을 중심으로)

  • Nam, Ki-Pyo;Lee, Dae-Gyun;Jang, Lim-Seok
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.3
    • /
    • pp.183-200
    • /
    • 2019
  • In this study, the characteristics of seasonal $PM_{2.5}$ behavior in South Korea and other Northeast Asian regions were analyzed by using the $PM_{2.5}$ ground measurement data, weather data, WRF and CMAQ models. Analysis of seasonal $PM_{2.5}$ behavior in Northeast Asia showed that $PM_{2.5}$ concentration at 6 IMS sites in South Korea was increased by long-distance transport and atmospheric congestion, or decreased by clean air inflow due to seasonal weather characteristics. As a result of analysis by applying BFM to air quality model, the contribution from foreign countries dominantly influenced the $PM_{2.5}$ concentrations of Baengnyeongdo due to the low self-emission and geographical location. In the case of urban areas with high self-emissions such as Seoul and Ulsan, the $PM_{2.5}$ contribution from overseas was relatively low compared to other regions, but the standard deviation of the season was relatively high. This study is expected to improve the understanding of the air pollutant phenomenon by analyzing the characteristics of $PM_{2.5}$ behavior in Northeast Asia according to the seasonal weather condition change. At the same time, this study can be used to establish the air quality policy in the future, knowing that the contribution of $PM_{2.5}$ concentration to the domestic and overseas can be different depending on the regional emission characteristics.

Impact of Emissions from Major Point Sources in Chungcheongnam-do on Surface Fine Particulate Matter Concentration in the Surrounding Area (충남지역 대형 점오염원이 주변지역 초미세먼지 농도에 미치는 영향)

  • Kim, Soontae;Kim, Okgil;Kim, Byeong-Uk;Kim, Hyun Cheol
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.2
    • /
    • pp.159-173
    • /
    • 2017
  • The Weather Research and Forecast (WRF) - Community Multiscale Air Quality (CMAQ) system was applied to investigate the influence of major point sources located in Chungcheongnam-do (CN) on surface $PM_{2.5}$ (Particulate Matter of which diameter is $2.5{\mu}m$ or less) concentrations in its surrounding areas. Uncertainties associated with contribution estimations were examined through cross-comparison of modeling results using various combinations of model inputs and setups; two meteorological datasets developed with WRF for 2010 and 2014, and two domestic emission inventories for 2010 and 2013 were used to estimate contributions of major point sources in CN. The results show that contributions of major point sources in CN to annual $PM_{2.5}$ concentrations over Seoul, Incheon, Gyeonggi, and CN ranged $0.51{\sim}1.63{\mu}g/m^3$, $0.71{\sim}1.62{\mu}g/m^3$, $0.63{\sim}1.66{\mu}g/m^3$, and $1.04{\sim}1.86{\mu}g/m^3$, respectively, depending on meteorology and emission inventory choice. It indicates that the contributions over the surrounding areas can be affected by model inputs significantly. Nitrate was the most dominant $PM_{2.5}$ component that was increased by major point sources in CN followed by sulfate, ammonium, and others. Based on the model simulations, it was estimated that primary $PM_{2.5}$ $(PPM)-to-PM_{2.5}$ conversion rates were 41.3~50.7 ($10^{-6}{\mu}g/m^3/TPY$) for CN, and 12.4~18.3 ($10^{-6}{\mu}g/m^3/TPY$) for Seoul, Incheon, and Gyeonggi, respectively. In addition, spatial gradients of PPM contributions show very steep trends. $NO_X$-to-nitrate conversion rates were 7.61~12.3 ($10^{-6}{\mu}g/m^3/TPY$) for CN, and 3.94~11.3 ($10^{-6}{\mu}g/m^3/TPY$) for the sub-regions in the SMA. $SO_2$-to-sulfate conversion rates were 4.04~5.28 ($10^{-6}{\mu}g/m^3/TPY$) for CN, and 3.73~4.43 ($10^{-6}{\mu}g/m^3/TPY$) for the SMA, respectively.

Analyzing the Changes in O3 Concentration due to Reduction in Emissions in a Metropolitan Area : A Case Study of Busan during the Summer of 2019 (대도시 지역의 배출량 저감에 따른 O3 농도 변화 분석: 부산광역시 2019년 여름 사례 )

  • Hyeonsik Choe;Wonbae Jeon;Dongjin Kim;Chae-Yeong Yang;Jeonghyeok Mun;Jaehyeong Park
    • Journal of Environmental Science International
    • /
    • v.32 no.7
    • /
    • pp.503-520
    • /
    • 2023
  • In this study, numerical simulations using community multiscale air quality (CMAQ) were conducted to analyze the change in ozone (O3) concentration due to the reduction in nitrogen oxides (NOx)andvolatile organic compounds (VOCs) emissions in Busan. When the NOx and, VOCs emissions were reduced by 40% and, 31%, respectively, the average O3 concentration increased by 4.24 ppb, with the highest O3 change observed in the central region (4.59 ppb). This was attributed to the decrease in O3 titration by nitric oxide (NO) due to the reduction of NOx emissions in Busan, which is classified as a VOCs-limited area. The distribution of O3 concentration changes was closely related to NOx emissions per area, and inland emissions were highly correlated with daily maximum concentrations and 8-h average O3 concentrations. Contrastingly, the effect of emission reduction depended on the wind direction. This suggests that the emission reduction effects may vary depending on the environmental conditions. Further research is needed to comprehensively analyze the emission reduction effects in Busan.

Characterizing Regional Ozone Concentration Changes Due to the Adoption of Eco-Friendly Vehicles in South Korea (친환경 자동차 도입에 따른 지역별 오존 농도 변화 특성 분석)

  • Chaeyeong Yang;Wonbae Jeon;DongJin Kim;Jaehyeong Park;Hyeonsik Choe;Jeonghyeok Mun
    • Journal of Environmental Science International
    • /
    • v.32 no.9
    • /
    • pp.613-626
    • /
    • 2023
  • This study investigates the impact of increased adoption of eco-friendly vehicles on ozone (O3) concentrations in South Korea, utilizing the community multiscale air quality (CMAQ) model. In the summer of 2017 (June-August), we conducted two experiments: a BASE experiment, representing baseline emissions, and an R_30 experiment, involving a 30% emission reduction due to eco-friendly vehicles. The contrast between these experiments reveals that, while most air pollutants decreased with reduced vehicle emissions, O3 concentrations surprisingly increased (up to 2.1 parts per billion) across South Korea. A further examination of O3 concentration changes was conducted by analyzing daytime and nighttime variations as well as wind direction. During the daytime, O3 concentrations notably rose near metropolitan areas due to reduced O3 titration (O3 + NO → O2 + NO2) resulting from emission reductions. At nighttime, O3 concentrations exhibited a greater increase, attributed to the transport of daytime-generated O3 to rural regions. Notably, the impact of reduced emissions in metropolitan areas on O3 concentrations in downwind areas varied depending on the prevailing wind direction. These findings highlight that the promotion of eco-friendly vehicles, though effective in lowering certain air pollutants, might not directly influence O3 concentrations. This study underscores the need to comprehensively understand the complicated chemistry of O3 to develop effective strategies for air quality management.

Evaluation of the Effect of Regional Pollutants and Residual Ozone on Ozone Concentrations in the Morning in the Inland of the Kanto Region

  • Kiriyama, Yusuke;Shimadera, Hikari;Itahashi, Syuichi;Hayami, Hiroshi;Miura, Kazuhiko
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • Increasing ozone concentrations are observed over Japan from year to year. One cause of high ozone concentration in the Kanto region, which includes areas inland from large coastal cities such as metropolitan Tokyo, is the transportation of precursors by sea breezes. However, high ozone concentrations are also observed in the morning, before sea breezes approach inland areas. In this point, there would be a possibility of residual ozone existing above the nocturnal boundary layer affects the ozone concentration in the following morning. In this study, we utilized the Weather Research and Forecasting model and the Community Multiscale Air Quality model to evaluate the effect of regional precursors and residual ozone on ozone concentrations over the inland Kanto region. The results show that precursors emitted from non-metropolitan areas affected inland ozone concentrations more than did precursors from metropolitan areas. Moreover, calculated results indicate downward transportation of residual ozone, resulting in increased concentration. The residual ozone was also affected by precursors emitted from non-metropolitan areas.

Seasonal Variations in Mercury Deposition over the Yellow Sea, July 2007 through April 2008

  • Ghim, Young Sung;Oh, Hyun Sun;Kim, Jin Young;Woo, Jung-Hun;Chang, Young-Soo
    • Asian Journal of Atmospheric Environment
    • /
    • v.10 no.3
    • /
    • pp.146-155
    • /
    • 2016
  • Spatial and temporal variations of mercury, including dry and wet deposition fluxes, were assessed over Northeast Asia, targeting the Yellow Sea, using meteorology and chemistry models. Four modeling periods, each representative of one of the four seasons, were selected. Modeling results captured general patterns and behaviors, and fell within similar ranges with respect to observations. However, temporal variations of mercury were not closely matched, possibly owing to the effects of localized emissions. Modeling results indicated that dry deposition is correlated with wind speed, while wet deposition is correlated with precipitation amount. Overall, the wet deposition flux of $66ng/m^2-day$ was about twice as large as the dry deposition flux of $32ng/m^2-day$, when averaged over the four modeling periods. Dry deposition occurred predominantly in the form of reactive gaseous mercury (RGM). In contrast, RGM accounted for only about two-thirds of wet deposition, while particulate mercury accounted for the remainder.

Evaluation of Contribution Rate of PM Concentrations for Regional Emission Inventories in Korean Peninsula Using Brute-force Sensitivity Analysis (Brute-force 방법을 이용한 한반도 미세먼지 농도에 대한 배출원의 기여도 산출 연구)

  • Lee, Soon-Hwan;Lee, Kang-Yeol
    • Journal of Environmental Science International
    • /
    • v.24 no.11
    • /
    • pp.1525-1540
    • /
    • 2015
  • In order to clarify the contribution rate of PM concentration due to regional emission distribution, Brute force analysis were carried out using numerical estimated PM data from WRF-CMAQ. The emission from Kyeongki region including Seoul metropolitan is the largest contribution of PM concentration than that from other regions except for emission of trans-country and source itself. Contribution rate of self emission is also the largest at Kyeongki region and its rate reach on over 95 %. And the rate at Gangwon region also higher than any region due to synoptic wind pattern. Due to synoptic wind direction at high PM episode, pollutants at downwind area along from west to east and from north to south tends to mix intensively and its composition is also complicated. Although the uncertainty of initial concentration of PM, the contribution of regional PM concentration tend to depend on the meteorological condition including intensity of synoptic and mesoscale wind and PM emission pattern over upwind region.