• 제목/요약/키워드: CLO value

검색결과 43건 처리시간 0.018초

요통방지를 위한 소프트형 의복 개발과 요부 근전도의 좌우 비대칭성 개선 (Development of compression garment of soft type for orthotherapy on low back pain and the improvement of asymmetric EMG)

  • 김소영;홍경희
    • 한국생활과학회지
    • /
    • 제23권4호
    • /
    • pp.665-680
    • /
    • 2014
  • The purpose of this study was to develop the construction process of orthopedic compression garments (OCG) for balancing of the left and right lumbar muscle power and strength to prevent low back pain. One male subject having low back pain was involved for investigating of the lumbar muscle power. EMG (Telemyo DTS2, Noraxon, U.S.A) was measured with/ without 3 types of waist assistant belt around the waist area of the subject. Based on the electromyogram value of left and right body, OCG were constructed as follows. Firstly, stretchable t-shirts type with supportive waist belt was selected for the convenience of wearing and laundering the OCG. The design lines of the front and back waist parts were created depending on the anatomy of the torso. Secondly, 3D pattern was developed using 3D Clo, RapidForm XOR, 2C-AN, and Yuka CAD program to increase the fit of the OCG. Finally, stretchable power-net was layered as linings in two ways, a single lining and double layered linings, and evaluated measuring lumbar muscle EMG by five subjects with low back pain. As the results, they were effective to balance the left and right lumbar muscle power and strength. Also the OCG with the double layered power-net lining was superior to the one layered lining in terms of fit and comfort.

운동복의 기능성과 쾌적성에 관한 연구 (Sportswear Physiological Optimization: Effects of Clothing ease, local heating and materiales)

  • 이영숙;안태환
    • 한국의류학회지
    • /
    • 제15권2호
    • /
    • pp.127-138
    • /
    • 1991
  • The aim of the present stud)r has been to obtain new and additional data allolwing a better design of sports garments as well as a better choice among some materiales, through measure-ment of body surface changes in the upper trunk in movement, measurement on the effects of local heating on other parts of the body and measurement of the thermal resistance of 6 types of materials applied on a manikin. In the first experiment, the upper trunk was divided in 32 Parts, the surface of which was measured by the tape method for two upper limb positions: extension at $90^{\circ}$ and $180^{\circ}$. In the second experiment, skin temperature, local thermal sensations and whole body thermal sensation were measured every 5 minutes during 40 minutes. The four areas of the shoulder, abdomen, hande and feet were heated with the hot pack at $50^{\circ}C$. In the third experiment, the regional thermal resistance of the various materials selected, in two different cases of clothing ease, have been measured by using a thermal manikin. Resultes of experiments were: 1. Extensions cause the upper front part of the trunk surface to lengthen vertically while the back tends to stretch in width. 2. Skin temperatures of the upper limbs are influenced by the abdomen and shoulder boatings. The correlation between the whole body thermal sensation and the upper trunk thermal sensation is significantly asserted. 3. Ceramic and aluminium coated materiales offer the most effective thermal resistance; ease in clothing increases the thermal resistance at the breast and the abdomen as well as the clo value of the materials.

  • PDF

정적 드레이프를 이용한 니트 옷감의 시뮬레이션 파라미터 추정 (Estimating Simulation Parameters for Kint Fabrics from Static Drapes)

  • 주은정;최명걸
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제26권5호
    • /
    • pp.15-24
    • /
    • 2020
  • 본 연구에서는 주어진 옷감 시료의 정적 드레이프 모양으로부터 해당 옷감을 시뮬레이션하기 위해 필요한 시뮬레이션 파라미터를 추정하는 데이터 기반 학습법을 제시한다. 정적 드레이프의 모양을 형성하기 위해 의류 산업계에서 옷감을 물성에 따라 분류하기 위해 사용하는 쿠식 드레이프 (Cusick's drape)에서 착안한 방법을 사용한다. 학습 모델의 입력 벡터는 특정 옷감의 정적 드레이프 모양에서 추출한 특징 벡터와 옷감의 밀도 값으로 구성되고, 출력 벡터는 해당 드레이프 결과를 도출하는 여섯가지 시뮬레이션 파라미터로 구성된다. 실제에 가깝고 편향되지 않은 학습 데이터를 생성하고자 먼저 400가지의 실제 니트 옷감에 대한 시뮬레이션 파라미터를 수집하고 이로부터 GMM (Gaussian mixture model) 생성 모델을 만든다. 다음, GMM 확률분포에 따라 대량의 시뮬레이션 파라미터를 무작위 샘플링한다. 샘플링된 각각의 시뮬레이션 파라미터에 대해 옷감 시뮬레이션을 수행하여 가상의 정적 드레이프 결과를 만들고 이로부터 특징 벡터를 추출한다. 생성된 데이터를 로그선형회기(log-linear regression) 모델로 피팅한다. 학습의 수치적 정확도를 검증하고 시뮬레이션 결과의 시각적 유사도를 비교하여 제시된 방법의 유용성을 확인한다.