• Title/Summary/Keyword: CLIMEX 모형

Search Result 2, Processing Time 0.018 seconds

Application of Habitat Suitability Models for Assessing Climate Change Effects on Fish Distribution (어류 분포에 미치는 기후변화 영향 평가를 위한 서식적합성 모형 적용)

  • Shim, Taeyong;Bae, Eunhye;Jung, Jinho
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.2
    • /
    • pp.134-142
    • /
    • 2016
  • Temperature increase and precipitation changes caused by change alter aquatic environments including water quantity and quality that eventually affects the habitat of aquatic organisms. Such changes in habitat lead to changes in habitat suitability of the organisms, which eventually determines species distribution. Therefore, conventional habitat suitability models were investigated to evaluate habitat suitability changes of freshwater fish cause by change. Habitat suitability models can be divided into habitat-hydraulic (PHABSIM, CCHE2D, CASiMiR, RHABSIM, RHYHABSIM, and River2D) and habitat-physiologic (CLIMEX) models. Habitat-hydraulic models use hydraulic variables (velocity, depth, substrate) to assess habitat suitability, but lack the ability to evaluate the effect of water quality, including temperature. On the contrary, CLIMEX evaluates the physiological response against climatic variables, but lacks the ability to interpret the effects of physical habitat (hydraulic variables). A new concept of ecological habitat suitability modeling (EHSM) is proposed to overcome such limitations by combining the habitat-hydraulic model (PHABSIM) and the habitat-physiologic model (CLIMEX), which is able to evaluate the effect of more environmental variables than each conventional model. This model is expected to predict fish habitat suitability according to climate change more accurately.

Predicting Potential Distribution of Monochamus alternatus Hope responding to Climate Change in Korea (기후변화에 따른 솔수염하늘소(Monochamus alternatus) 잠재적 분포 변화 예측)

  • Kim, Jaeuk;Jung, Huicheul;Park, Yong-Ha
    • Korean journal of applied entomology
    • /
    • v.55 no.4
    • /
    • pp.501-511
    • /
    • 2016
  • Predicting potential spatial distribution of Monochamus alternatus, a major insect vector of the pine wilt disease, is essential to the spread of the pine wilt disease. The purpose of this study was to predict future domestic spatial distribution of M. alternatus by using the CLIMEX model considering the temperature condition of the vector's life history. To predict current distribution of M. alternatus, the administrative divisions data where the pine wilt spots caused by M. alternatus were found from 2006 to 2014 and the 10-year mean climate observed data in 68 meteorological stations from 2006 to 2015 were used. Eight parameter sets were chosen based on growth temperature range of M. alternatus reported in preceding researches. Error matrix method was utilized to select and simulate the parameter sets showing the highest correlation with the actual distribution. Regarding the future distribution of M. alternatus, two periods of 2050s(2046-2055) and 2090s(2091-2100) were predicted using the projected climate data of RCP 8.5 Scenario generated from Korea Meteorological Administration. Overall results of M. alternatus distribution simulation were fit in the actual distribution; however, overestimation in Seoul Metropolitan area and Chungnam Region were shown. Gradual expansion of M. alternatus would be expected to nationwide from western and southern coastal areas of Korea peninsula.