Background: Although the zygomatic arch is an important structure determining facial prominence and width, no consensus exists regarding the classification of isolated zygomatic arch fractures, and the literature on this topic is scarce. To date, five papers have subdivided zygomatic arch fractures; however, only one of those proposed classifications includes the injury vector, although the injury vector is one of the most important factors to consider in fracture cases. Furthermore, the only classification that does include the injury vector is too complicated to be suitable for daily practice. In addition, the existing classifications are clinically limited because they do not consider greenstick fractures, nondisplaced fractures, or coronoid impingement. In the present study, we present a rearrangement of the previously published classifications and propose a modified classification of isolated zygomatic arch fractures that maximizes the advantages and overcomes the disadvantages of previous classification systems. Methods: The classification criteria for isolated zygomatic arch fractures described in five previous studies were analyzed, rearranged, and supplemented to generate a modified classification. The medical records, radiographs, and facial bone computed tomography findings of 134 patients with isolated zygomatic arch fractures who visited our hospital between January 2010 and December 2019 were also retrospectively analyzed. Results: We analyzed major classification criteria (displacement, the force vector of the injury, V-shaped fracture, and coronoid impingement) for isolated zygomatic arch fracture from the five previous studies and developed a modified classification by subdividing zygomatic arch fractures. We applied the modified classification to cases of isolated zygomatic arch fracture at our hospital. The surgery rate and injury severity differed significantly from fracture types I to VI. Conclusion: Using our modified classification, we could determine that both the injury force and the injury vector meaningfully influenced the surgery rate and the severity of the injuries.
Journal of the Korean Society for Library and Information Science
/
v.58
no.2
/
pp.269-288
/
2024
To structure the KOS registry, it is necessary to select a classification system that suits the characteristics of the collected KOS. This study aimed to classify domestic KOS collected through various classification schems, and based on these results, provide insights for selecting a classification system when structuring the KOS registry. A total of 313 KOS data collected via web searches were categorized using five types of classification systems and a thesaurus, and the results were analyzed. The analysis indicated that for international linkage of the KOS registry, foreign classification systems should be applied, and for optimization with domestic knowledge resources or to cater to domestic researchers, domestic classification systems need to be applied. Additionally, depending on the field-specific characteristics of the KOS, research area KOS should apply classification systems based on academic disciplines, while public sector KOS should consider classification systems based on government functions. Lastly, it is necessary to strengthen the linkage between domestic and international KOS, which also requires the application of multiple classification systems.
Journal of the Korean Society for Library and Information Science
/
v.58
no.3
/
pp.65-89
/
2024
This study developed a model to classify news articles into categories of topic, genre, and region using a Korean Pre-trained Language model. To achieve this, a new news article classification system was designed by referring to the classification systems of domestic media outlets. The topic and genre classification models were implemented as hierarchical classification models that link the main categories and subcategories, and their performance was compared with that of an integrated category model. The evaluation results showed that the hierarchical structure classification model had the advantage of providing more precise categorization in ambiguous or overlapping categories compared to the integrated category model. For regional classification of news articles, a model was built to classify into 18 categories, and for regional news articles, the regional characteristics were clearly reflected in the text, resulting in high performance. This study demonstrated the effectiveness of classifying news articles from multiple perspectives-topic, genre, and region-and emphasized the significance of suggesting the potential for a multi-dimensional news article classification service that meets user needs.
Park, No-Wook;Yoo, Hee Young;Kim, Yihyun;Hong, Suk-Young
Korean Journal of Remote Sensing
/
v.28
no.5
/
pp.489-499
/
2012
In this paper, a classifier ensemble framework for remote sensing data classification is presented that combines classification results generated from both different training sets and different classifiers. A core part of the presented framework is to increase a diversity between classification results by using both different training sets and classifiers to improve classification accuracy. First, different training sets that have different sampling densities are generated and used as inputs for supervised classification using different classifiers that show different discrimination capabilities. Then several preliminary classification results are combined via a majority voting scheme to generate a final classification result. A case study of land-cover classification using multi-temporal ENVISAT ASAR data sets is carried out to illustrate the potential of the presented classification framework. In the case study, nine classification results were combined that were generated by using three different training sets and three different classifiers including maximum likelihood classifier, multi-layer perceptron classifier, and support vector machine. The case study results showed that complementary information on the discrimination of land-cover classes of interest would be extracted within the proposed framework and the best classification accuracy was obtained. When comparing different combinations, to combine any classification results where the diversity of the classifiers is not great didn't show an improvement of classification accuracy. Thus, it is recommended to ensure the greater diversity between classifiers in the design of multiple classifier systems.
The Industrial Classification is a systematic taxonomy of industrial activities and the Standard Industrial Classification is used in all country by their own a consistent classification method. Therefore, it is employed to analyze current status of industry affairs using statistical investigations in terms industrial activities for making industrial policies and to compare industrial activity among countries. Since the Second Industrial Revolution, the need for the homogenous standard of industrial classification among countries emerged as the economic and industrial exchanges between the countries have became more active. In 1940, Colin Clark who british economist divided the industry into the first (primitive), second (processed), and third (service) industries. Based on this, the United Nations Office for Statistics (UNSD) established International Standard Industry Classification (ISIC) in 1948, which most countries invoke it. ISIC(International Standard Industry Classification) and the standard industry classifications of countries have reached the present after several revisions since the enactment of the Act. In the 2000s, the standard industry classification is amended to reflect the emergence of new industries and changes in industrial structure, mainly featuring the creation and segmentation of sections in the tertiary industry domains. It also shows that primary and secondary sectors are shifting to tertiary industry. In this study, the causes of these common phenomena are systematically identified and the problems present classification systems have been analyzed. Also proposed is the direction of formation of the industrial classification system from a service economy point of view and the conceptual model of the new classification system. In the future, it is necessary to validate the proposed model through this study and to carry out various new classification system studies.
Journal of Korean Library and Information Science Society
/
v.53
no.4
/
pp.123-142
/
2022
In 2000, North Korea developed and published a two-volume, <Classification-Search Term Dictionary> and is currently used throughout North Korea. The purpose of this study is to examine the development process of the classification schemes of the North Korea after liberation and to understand the contents, composition, and principles of the <Classification-Search Term Dictionary> published in 2000 and revised in 2014. Until now, all the studies of the North Korean classification schemes were studies on the <Book Classification Scheme> published in North Korea in 1964, and there has been no discussion on North Korea's classification schemes since then. The first volume of the <Classification-Search Term Dictionary> consists of 'classification symbols - search terms', and the second volume consists of 'search terms - classification symbols'. Volume 1 is based on the <Books and Bibliography Classification Scheme (1996)>, and there are a total of 41 main classes in five categories. Volume 1 allocates 1 main class (11/19) to 'revolutionary ideas and theories', 8 main classes (20~27) to 'natural sciences', 19 main classes (30~69) to 'engineering technology and applied sciences', 12 main classes (70~85) to 'social sciences', and 1 main class (90) to 'total sciences'. Volume 2 is similar to subject-headings. North Korea's <Classification-Search Term Dictionary> is the first classification scheme introduced in South Korea and is expected to be the starting point for future studies on the establishment of the standard unification classification schemes.
KSCE Journal of Civil and Environmental Engineering Research
/
v.28
no.4D
/
pp.569-577
/
2008
The purpose of this study is focused on the development of compound classification process by mixing multitemporal data and annexing a specific image enhancement technique with a specific image classification algorithm, to gain more accurate land information from satellite imagery. That is, this study suggests the classification process using canonical correlation classification technique after principal component analysis for the mixed multitemporal data. The result of this proposed classification process is compared with the canonical correlation classification result of one date images, multitemporal imagery and a mixed image after principal component analysis for one date images. The satellite images which are used are the Landsat 5 TM images acquired on July 26, 1994 and September 1, 1996. Ground truth data for accuracy assessment is obtained from topographic map and aerial photograph, and all of the study area is used for accuracy assessment. The proposed compound classification process showed superior efficiency to appling canonical correlation classification technique for only one date image in classification accuracy by 8.2%. Especially, it was valid in classifying mixed urban area correctly. Conclusively, to improve the classification accuracy when extracting land cover information using Landsat TM image, appling canonical correlation classification technique after principal component analysis for multitemporal imagery is very useful.
Journal of the Korean Institute of Intelligent Systems
/
v.8
no.6
/
pp.122-128
/
1998
This paper presents compression of image sequences based on the classification of interframe difference image blocks. classification process consists of image activity classification and energy distribution classification. In the activity classification, interframe difference image blocks are classified into activity blocks and non-activity blocks using the edge detection. In the distribution classification, activity blocks are further classified into vertical blocks, horizontal blocks, and small activity blocks using the AC energy distribution features. The RBFN, trained with numerical classification results, successfully classifies difference image blocks according to image details. Image sequence compressing based on the classification of interframe difference image blocks using the RBFN shows better compression results and less training time than the classical sorting method and the MLP network.
Journal of the Korean Society for Library and Information Science
/
v.44
no.2
/
pp.241-262
/
2010
This study aims to perform an evaluation of classification systems provided by major Korean search portals, Naver, Nate, Daum, and Yahoo-Korea. These classification systems are evaluated in terms of the consistency of classification system, logicality of classification system, ease of interface, clarity of category names, order of category and site listing, and hierarchical structure. The results of this study show that each search portal provides separate classification systems for their services. These results imply that it is crucial for search portals to implement a common classification system and a common interface for their services. This study could contribute to the development and improvement of portals' classification systems.
The Transactions of The Korean Institute of Electrical Engineers
/
v.66
no.9
/
pp.1402-1408
/
2017
Recently, services for personal biometric data analysis based on real-time monitoring systems has been increasing and many of them have focused on recognition of emotions. In this paper, we propose a classification model to classify anxiety emotion using biometric data actually collected from people. We propose to deploy the support vector machine to build a classification model. In order to improve the classification accuracy, we propose two data pre-processing procedures, which are normalization and data deletion. The proposed algorithms are actually implemented based on Real-time Traffic Flow Measurement structure, which consists of data collection module, data preprocessing module, and creating classification model module. Our experiment results show that the proposed classification model can infers anxiety emotions of people with the accuracy of 65.18%. Moreover, the proposed model with the proposed pre-processing techniques shows the improved accuracy, which is 78.77%. Therefore, we can conclude that the proposed classification model based on the pre-processing process can improve the classification accuracy with lower computation complexity.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.