• Title/Summary/Keyword: CIS Nanoparticles

Search Result 13, Processing Time 0.023 seconds

Preparation of nanoparticles CuInSe2 absorber layer by a non-vacuum process of low cost cryogenic milling (저가의 cryogenic milling 비진공법을 이용한 나노입자 CuInSe2 광흡수층 제조)

  • Kim, Ki-Hyun;Park, Byung-Ok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.2
    • /
    • pp.108-113
    • /
    • 2013
  • Chalcopyrite material $CuInSe_2$ (CIS) is known to be a very prominent absorber layer for high efficiency thin film solar cells. Current interest in the photovoltaic industry is to identify and develop more suitable materials and processes for the fabrication of efficient and cost-effective solar cells. Various processes have been being tried for making a low cost CIS absorber layer, this study obtained the CIS nanoparticles using commercial powder of 6 mm pieces for low cost CIS absorber layer by high frequency ball milling and cryogenic milling. And the CIS absorber layer was prepared by paste coating using milled-CIS nanoparticles in glove box under inert atmosphere. The chalcopyrite $CuInSe_2$ thin films were successfully made after selenization at the substrate temperature of $550^{\circ}C$ in 30 min, CIS solar cell of Al/ZnO/CdS/CIS/Mo structure prepared under various deposition process such as evaporation, sputtering and chemical vapor deposition respectively. Finally, we achieved CIS nanoparticles solar cell of electric efficient 1.74 % of Voc 29 mV, Jsc 35 $mA/cm^2$ FF 17.2 %. The CIS nanoparticles-based absorber layers were characterized by using EDS, XRD and HRSEM.

The Synthesis of CuInS2 Nanoparticles by a Simple Sonochemical Method

  • Park, Jae-Young;Park, Jong-Pil;Hwang, Cha-Hwan;Kim, Ji-Eon;Choi, Myoung-Ho;Ok, Kang-Min;Kwak, Ho-Young;Shim, Il-Wun
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2713-2716
    • /
    • 2009
  • $CuInS_{2}$ nanoparticles were synthesized by a simple sonochemical method; First, Cu nanoparticles were prepared from $CuInS_{2}$ in methanol solution by a one pot reaction through the sonochemistry under multibubble sonoluminescence (MBSL) conditions. Second, the resulting Cu nanoparticles were treated with $InCl_3{\cdot}4H_2O$ and $CH_3CSNH_2$ (thioacetamide) at the same MBSL conditions to synthesize $In_2S_3$-coated Cu nanoparticles in methanol solution. Then, they were transformed into $CuInS_{2}$ (CIS) nanoparticles of 20 $\sim$ 40 nm size in diameter by thermal heating at 300 ${^{\circ}C}$ for 2 hr. The prepared CIS nanoparticles, of which band gap is 1.44 eV, were investigated by X-ray diffractometer, UV-Vis spectrophotometer, inductively coupled plasma spectrometer, and high resolution-transmission electron microscope.

A Study of CIGS Coated Thin-Film Layer using Doctor Blade Process (Doctor blade를 이용한 용액형 CIGS 균일 코팅에 관한 연구)

  • Yu, Jong-Su;Yoon, Seong Man;Kim, Do-Jin;Jo, Jeongdai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.93.2-93.2
    • /
    • 2010
  • Recently, printing and coating technologies application fields have been expanded to the energy field such as solar cell. One of the main reasons, why many researchers have been interested in printing technology as a manufacturing method, is the reduction of manufacturing cost. In this paper, We fabricated CIGS solar cell thin film layer by doctor blade methods using synthesis of CIS precursor nanoparticles ink on molybdenum (Mo) coated soda-lime glass substrate. Synthesis CIS precursor nanoparticles ink fabrication was mixed Cu, In, Se powder and Ethylenediamine, using microwave and centrifuging. Using multi coating process as we could easily fabrication a fine flatness CIS thin-film layer ($0.7{\sim}1.35{\mu}m$), and reduce a manufacture cost and process steps. Also if we use printing and coating method and solution process in each layer of CIGS solar cell (electrode, buffer), it is possible to fabricate all printed thin-film solar cell.

  • PDF

Preperation of CuInSe2 Nanoparticles by Solution Process Using Precyrsors

  • Choe, Ha-Na;Lee, Seon-Suk;Jeong, Taek-Mo;Kim, Chang-Gyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.376-376
    • /
    • 2011
  • I-III-VI2 chalcopyrite compounds, particularly copper, indium, gallium selenide(Cu(InxGa1-x)Se2, CIGS), are effective light-absorbing materials in thin-film solar application. They are direct band-gap semiconductors with correspondingly high optical absorption coefficients. Also they are stable under long-term excitation. CIS (CIGS) solar cell reached conversion efficiencies as high as 19.5%. Several methods to prepare CIS (CIGS) absorber films have been reported, such as co-evaporation, sputtering, selenization, and electrodeposition. Until now, co-evaporation is the most successful technique for the preparation of CIS (CIGS) in terms of solar efficiency, but it seems difficult to scale up. CIS solar cells have been hindered by high costs associated with a fabrication process. Therefore, inorganic colloidal ink suitable for a scalable coating process could be a key step in the development of low-cost solar cells. Here, we will present the preparation of CIS photo absorption layer by a solution process using novel metal precursors. Chalcopyrite copper indium diselenide (CuInSe2) nanocrystals ranging from 5 to 20nm in diameter were synthesized by arrested precipitation in solution. For the fabrication of CIS photo absorption layer, the CuInSe2 colloidal ink was prepared by dispersing in organic solvent and used to drop-casting on molybdenum substrate. We have characterized the nanoparticless and CIS layer by XRD, SEM, TEM, and ICP.

  • PDF

Synthesis of CuInSe2 Nanoparticles by Solvothermal Method (용매열법을 이용한 CuInSe2 나노 입자 합성)

  • Kim Ki-Hyun;Chun Young-Gab;Park Byung-Ok;Yoon Kyung-Hoon
    • Korean Journal of Materials Research
    • /
    • v.14 no.10
    • /
    • pp.737-742
    • /
    • 2004
  • $CuInSe_2$ (CIS) nanoparticles of chalcopyrite structure were directly synthesized by a solvothemal method in an autoclave with diethylamine as a solvent. A morphology change of the nanoparticles was observed as a function of reaction temperatures and times. Dense rod-type CIS nanoparticles with width of $5\sim10mm$ and length in the range of 30-80 nm were obtained at $180^{\circ}C$ for 36 hrs whereas spherical particles with diameter in the range of 5-10 nm were observed at $250^{\circ}C$ for 36 hrs. The formation of the rod-like nanoparticles in diethylamine, without double N-chelation, was explained by the Solution-Liquid-Solid (SLS) mechanism.

Visible Light-Driven $CuInS_2-TiO_2$ Nanotube Composite Photoelectrodes with Heterojunction Structureusing Pulsed-Electrochemical Deposition Process (Pulse 전위를 적용한 전기화학적 증착 공정으로 제조된 가시광 활성 이종접합 $CuInS_2-TiO_2$ Nanotube 화합물 광전극)

  • Yun, Jung-Ho;Amal, Rose;Park, Young-Koo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.49-56
    • /
    • 2013
  • Excellent electron transport properties with enhanced light scattering ability for light harvesting have made well-ordered one dimensional $TiO_2$ nanotube(TNT) arrays an alternative candidate over $TiO_2$ nanoparticles in the area of solar energy conversion applications. The principal drawback of TNT arrays being activated only by UV light has been addressed by coupling the TNT with secondary materials which are visible light-triggered. As well as extending the absorption region of sunlight, the introduction of these foreign components is also found to influence the charge separation and electron lifetime of TNT. In this study, a novel method to fabricate the TNT-based composite photoelectrodes employing visible responsive $CuInS_2$ (CIS) nanoparticles is presented. The developed method is a square wave pulse-assisted electrochemical deposition approach to wrap the inner and outer walls of a TNT array with CIS nanoparticles. Instead of coating as a dense compact layer of CIS by a conventional non-pulsed-electrochemical deposition method, the nanoparticles pack relatively loosely to form a rough surface which increases the surface area of the composite and results in a higher degree of light scattering within the tubular channels and hence a greater chance of absorption. The excellence coverage of CIS on the tubular $TiO_2$ allows the construction of an effective heterojunction that exhibits enhanced photoelectrochemical performance.

Morphological Change of $CuInSe_2$ Nanoparticles by Solvothermal Synthesis Conditions (용매열 합성조건에 따른 $CuInSe_2$ 나노입자 형상변화)

  • 김기현;전영갑;윤경훈;박병옥
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.230-230
    • /
    • 2003
  • Chalcopyrite 구조를 가진 CuInSe$_2$ (CIS) 나노입자를 유기용매인 diethylamine을 사용하여 autoclave안에서 용매열법(solvothermal method)으로 제조하였다. 180 $^{\circ}C$에서 36시간 반응시켜 길이가 10-30 nm, 폭이 5-10 nm인 rod-Eke 형상을 한 CIS 나노입자를 얻었다. 반응온도를 25$0^{\circ}C$로 증가시키고 동일한 반응시간에서 보다 미세하고 균일한 구형의 CIS 나노입자를 관찰할 수 있었다. 한편, 190 $^{\circ}C$에서 얻어진 CIS 나노입자는 36시간을 반응시킨 경우 구형으로 관찰되었으나 60시간 반응시킨 경우는 길이가 50-100 nm 인 rod-like 입자로 성장하였다. 이와 같이 반응시간과 온도를 달리하여 나노입자의 형상이 바뀌는 것을 입자성장기구의 관점에서 고찰하였다. 반응시간과 온도에 따라 얻어진 CIS 나노 입자들의 결정성, 미세구조 그리고 정량 및 정성분석을 XRD, SEM, TEM, EDS등으로 각각 행하였다.

  • PDF

Adsorption Characteristics and Structure of 4,4'-Bis(mercaptomethyl)biphenyl on Silver by Surface-enhanced Raman Scattering and Density Functional Theory Calculations

  • Eom, So Young;Lee, Yu Ran;Kim, Hong Lae;Kwon, Chan Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.875-880
    • /
    • 2014
  • Adsorption of 4,4'-bis(mercaptomethyl)biphenyl (44BMBP) on silver nanoparticles has been investigated by surface-enhanced Raman scattering (SERS) spectroscopy. In addition, the Raman spectra of 44BMBP in solid state and in basic condition have been obtained for comparative study to elicit the characteristics of adsorption. The observed Raman and SERS spectra were analyzed comparing with the normal modes and vibrational frequencies from density functional theory (DFT) calculations performed for the feasible structures of 44BMBP molecule. On the basis of excellent agreement between the calculated and the experimental results, the molecule is found to have both the cis- and trans-forms for the mercaptomethyl groups in the solid state as well as in the basic condition. In contrast, the molecule is found to be chemisorbed on the silver surface by forming two Ag-S linkages only in the cis-form but not in the trans-form due to the steric interruption, which indicates the parallel orientation of molecules on the surface. Particularly, the spectral features in the SERS spectra such as the absence of the C-H stretching band and enhancement for the out-of-plane skeletal modes are confirmatory for the parallel geometry through ${\pi}$ interaction between the phenyl rings and the metal surface, based on the electromagnetic surface selection rule.

Synthesis of $CuInGaSe_2$ Nanoparticles for Absorber Layer of Solar Cell (태양전지 광흡수층용 $CuInGaSe_2$ 나노입자 합성)

  • 김기현;전영갑;윤경훈;박병옥
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.231-231
    • /
    • 2003
  • I-III-Ⅵ족 CuInGaSe$_2$(CIGS)계 화합물 태양전지는 1 eV 이상의 직접 천이형 에너지 밴드갭을 가지며, 전기 광학적으로 매우 안정하여 태양전지의 광흡수층으로 매우 이상적이다. CIGS 광흡수층제조를 위하여 용매열법 (solvothermal method)으로 CIGS나노입자를 합성하였다. 용매열법은 진공장비를 사용하던 기존의 방법에 비해 저온, 저압에서 저가로 합성할 수 있다는 장점을 가지고 있다. Copper, indium selenium 및 gallium 분말과 유기용매 ethylenediarnine을 autoclave안에서 반응시켜 CIGS 나노입자를 제조하였다. 280 에서 14시간동안 반응시켜 직경이 30-80 nm인 구형에 가까운 CIGS 나노입자를 얻었다. 이것은 용매열법에 의한 4성분계의 CIGS 나노입자의 최초 합성이다. diehyleneamine을 용매로 사용한 경우에 한하여 구형의 CIS 입자를 합성할 수 있다고 보고되었으나, Cu와 이중 N-chelation이 형성되는 ethylenediamine 용매임에도 불구하고 구형의 CIGS 나노분말이 형성된 것은 solution-liquid-solid (SLS) 기구로 설명할 수 있었다. HRSEM, TEM, XRD. EDS으로 나노분말의 형상 크기 및 조성을 조사하여 chalcopyrite 구조의 CuInGaSe$_2$ 임을 확인하였다.

  • PDF

Fabrication of $Cu_xSe$ thin films by selenization of $Cu_xSe$ nanoparticles prepared by a colloidal process (CIS 태양전지용 이원 화합물 $Cu_xSe$ 나노입자를 이용한 $Cu_xSe$ 박막 제조)

  • Kim, Kyun-Hwan;Ahn, Se-Jin;Yun, Jae-Ho;Gwak, Ji-Hye;Kim, Do-Jin;Yoon, Kyung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.96-98
    • /
    • 2009
  • This report summarizes our recent efforts to produce large-grained CIGS materials from porous nanoparticle thin films. In our approach, a $Cu_xSe$ nanoparticle colloid were first prepared by reacting a mixture of CuI in pyridine with $Na_2Se$ in methanol at reduced temperature. purified colloid was sprayed onto heated molybdenum-coated sodalime glass substrates to form thin film. After thermal processing of the thin film under a selenium ambient. $Cu_xSe$ colloid and thin film were characterized by scanning electron microscopy, x-ray diffraction. The optical(direct) band gap energy of $Cu_xSe$ thin films is 1.5 eV.

  • PDF