• Title/Summary/Keyword: CIP Method

Search Result 126, Processing Time 0.034 seconds

MULTI-SCALE MODELING AND ANALYSIS OF CONVECTIVE BOILING: TOWARDS THE PREDICTION OF CHF IN ROD BUNDLES

  • Niceno, B.;Sato, Y.;Badillo, A.;Andreani, M.
    • Nuclear Engineering and Technology
    • /
    • v.42 no.6
    • /
    • pp.620-635
    • /
    • 2010
  • In this paper we describe current activities on the project Multi-Scale Modeling and Analysis of convective boiling (MSMA), conducted jointly by the Paul Scherrer Institute (PSI) and the Swiss Nuclear Utilities (Swissnuclear). The long-term aim of the MSMA project is to formulate improved closure laws for Computational Fluid Dynamics (CFD) simulations for prediction of convective boiling and eventually of the Critical Heat Flux (CHF). As boiling is controlled by the competition of numerous phenomena at various length and time scales, a multi-scale approach is employed to tackle the problem at different scales. In the MSMA project, the scales on which we focus range from the CFD scale (macro-scale), bubble size scale (meso-scale), liquid micro-layer and triple interline scale (micro-scale), and molecular scale (nano-scale). The current focus of the project is on micro- and meso-scales modeling. The numerical framework comprises a highly efficient, parallel DNS solver, the PSI-BOIL code. The code has incorporated an Immersed Boundary Method (IBM) to tackle complex geometries. For simulation of meso-scales (bubbles), we use the Constrained Interpolation Profile method: Conservative Semi-Lagrangian $2^{nd}$ order (CIP-CSL2). The phase change is described either by applying conventional jump conditions at the interface, or by using the Phase Field (PF) approach. In this work, we present selected results for flows in complex geometry using the IBM, selected bubbly flow simulations using the CIP-CSL2 method and results for phase change using the PF approach. In the subsequent stage of the project, the importance of effects of nano-scale processes on the global boiling heat transfer will be evaluated. To validate the models, more experimental information will be needed in the future, so it is expected that the MSMA project will become the seed for a long-term, combined theoretical and experimental program.

Crystal growth and pinning enhancement of directionally melt-textured$(Y_{0.5}Nd_{0.25}Sm_{0.25})Ba_2Cu_3O_y$ oxides in air

  • Kim So-Jung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.5
    • /
    • pp.188-192
    • /
    • 2005
  • High $T_c(Y_{0.5}Nd_{0.25}Sm_{0.25})Ba_2Cu_3O_y[(YNS)-123]$ superconductors with/without $CeO_2$ additive were systematically investigated by the zone melt growth process in air. Cylindrical green rods of (YNS)-123 oxides were fabricated by cold isostatic pressing (CIP) method using rubber mould. A sample prepared by this method showed well-textured microstructure, and $(Y_{0.5}Nd_{0.25}Sm_{0.25})_2BaCuO_5[(YNS)211]$ nonsuperconducting inclusions were uniformly dispersed in large $(Y_{0.5}Nd_{0.25}Sm_{0.25})Ba_2Cu_3O_y$[(YNS)123] superconducting matrix. In this study, optimum melting temperature and growth rate were $1100^{\circ}C$ and 3 mm/hr, respectively. The directionally melt-textured (YNS)-123 sample with $CeO_2$ additive showed an onset critical temperature $(T_c)\;T_c{\geq}93K$ and sharp superconducting transition.

Manufacturing Technology of Thin Foil Tensile Specimen Using Cold Isostatic Press and Precision Mechanical Property Measurement Technology (냉간 등방압 성형기를 이용한 미세박판 인장시험시편 가공기술 및 정밀 기계적 물성 측정기술)

  • Lee H. J.;Park H. J.;Lee N. K.;Kim S. S.;Lee H. W.;Hwang J. H.;Park J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.245-248
    • /
    • 2005
  • This paper is concerned with manufacturing technology of thin foil tensile specimen using CIP(Cold Isostatic Press) and measurement of precision mechanical property. This thin foil tensile specimen manufacturing technology is a method that can make a metal thin foil specimen for micro tensile testing. We can get a burr free micro metallic thin foil specimen using this technology. For testing mechanical property of this micro thin foil, we use a nano scale material testing machine that was developed by KITECH. In this paper, micro tensile specimens of nickel and copper thin foil are fabricated with CIP and precision mechanical properties of these materials could be measured. We will expect that precision mechanical property of micro/nano material and component. Micro and Nano mechanical property can be measured using this technology and mechanical property data base of micro/nano material and component can be constructed.

  • PDF

Changes in Mechanical and Electrical Properties as a Function of Unidirectional Pressure Changes in Preforming While Isostatic Pressing for Graphite Block Fabrication (흑연블록 제조를 위한 등압성형 시 일축가압 예비성형의 압력변화에 따른 기계적 및 전기적 특성 변화)

  • Tae-Sub Byun;Dong-Pyo Jeon;Sang-Hye Lee;Sang-Woo Lee;Jae-Seung Roh
    • Journal of Powder Materials
    • /
    • v.30 no.1
    • /
    • pp.35-40
    • /
    • 2023
  • In this study, a graphite block is fabricated using artificial graphite processing byproduct and phenolic resin as raw materials. Mechanical and electrical property changes are confirmed due to the preforming method. After fabricating preforms at 50, 100, and 150 MPa, CIP molding at 150 MPa is followed by heat treatment to prepare a graphite block. 150UP-CIP shows a 12.9% reduction in porosity compared with the 150 MPa preform. As the porosity is decreased, the bulk density, flexural strength, and shore hardness are increased by 14.9%, 102.4%, and 13.7%, respectively; and the deviation of density and electrical resistivity are decreased by 51.9% and 34.1%, respectively. Therefore, as the preforming pressure increases, the porosity decreases, and the electrical and mechanical properties improve.

Shear Strength of Prestressed PC-CIP Composite Beams without Vertical Shear Reinforcements (수직전단보강이 없는 PS 콘크리트와 현장타설 콘크리트 합성보의 전단강도)

  • Kim, Chul-Goo;Park, Hong-Gun;Hong, Geon-Ho;Kang, Su-Min;Suh, Jung-Il
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.4
    • /
    • pp.533-543
    • /
    • 2014
  • Currently, composite construction of prestressed Precast Concrete (PC) and Cast-In-Place (CIP) concrete with different concrete strengths are frequently used in the modular construction. However, current design codes do not clearly define shear design methods for such composite beams. In this present study, simply supported prestressed PC-CIP composite beams without vertical shear reinforcement or only with horizontal shear reinforcement were tested to evaluate the effect of prestressing on the shear strength and the shear design method for such composite members. The test variables were the area ratio of PC and CIP concretes, prestressing force, shear span-to-depth ratio, and shear reinforcement ratio. The results showed that the shear strength was increased by the increase of prestressing force and prestressed PC area, and the decrease of shear span-to-depth ratio.

Characteristics of Bi(Pb)-Sr-Ca-Cu-O Superconductor Wire Fabricated using the Billet Insertion Method (Billet 장입 방식을 이용 제조한 Bi(Pb)-Sr-Ca-Cu-O 초전도 선재의 특성)

  • 장건익;유재근;홍계원
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.4
    • /
    • pp.471-477
    • /
    • 1996
  • During Bi(Pb)-Sr-Ca-Cu-O superconductor wire fabrication the effect of the initial packing density on the final characteristics of superconductor wire was systematically studied. To increase the powder packing density with uniform distribution of superconducting core a billet insertion method processed by CIP was applied instead of the commonly used vibration and ramming method of powder insertion into silver sheath. Compared with the vibration and ramming method the billent insertion technique processed by CIP cause the 30% incre-specimen with 130${\mu}{\textrm}{m}$(core thickness : 45 ${\mu}{\textrm}{m}$)and 5.24 mm width processed at 84$0^{\circ}C$for 200hrs. shows specimen with 130${\mu}{\textrm}{m}$ (core thickness ; 45${\mu}{\textrm}{m}$)and 5.24 mm width processed at 84$0^{\circ}C$ for 200 hrs. shows maximum 34A for Ic and 16, 700 A/cm2 for Ic measured at 77K and 0T. Also the sample rolled 3 times shows maximum 7, 2A for Ic and 11, 000 A/cm2 for 77K and 0T. Based on X-ray experimental results the formation of Bi-2223 and texture were significantly well developed at the interface between the superconducting core and silver sheath as compared with those of the interior area of superconducting core.

  • PDF

Development of Simplified Immersed Boundary Method for Analysis of Movable Structures (가동물체형 구조물 해석을 위한 Simplified Immersed Boundary법의 개발)

  • Lee, Kwang-Ho;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.3
    • /
    • pp.93-100
    • /
    • 2021
  • Since the IB (Immersed Boundary) method, which can perform coupling analysis with objects and fluids having an impermeable boundary of arbitrary shape on a fixed grid system, has been developed, the IB method in various CFD models is increasing. The representative IB methods are the directing-forcing method and the ghost cell method. The directing-forcing type method numerically satisfies the boundary condition from the fluid force calculated at the boundary surface of the structure, and the ghost-cell type method is a computational method that satisfies the boundary condition through interpolation by placing a virtual cell inside the obstacle. These IB methods have a disadvantage in that the computational algorithm is complex. In this study, the simplified immersed boundary (SIB) method enables the analysis of temporary structures on a fixed grid system and is easy to expand to three proposed dimensions. The SIB method proposed in this study is based on a one-field model for immiscible two-phase fluid that assumes that the density function of each phase moves with the center of local mass. In addition, the volume-weighted average method using the density function of the solid was applied to handle moving solid structures, and the CIP method was applied to the advection calculation to prevent numerical diffusion. To examine the analysis performance of the proposed SIB method, a numerical simulation was performed on an object falling to the free water surface. The numerical analysis result reproduced the object falling to the free water surface well.

Study on analytical method of fluoroquinolone residues in eggs by LC/MS/MS (LC/MS/MS를 이용한 식용란 중 fluoroquinolone계 항균물질의 분석법에 관한 연구)

  • Choi, You-Jeong;Yun, I-Ran;Nam, Sang-Yun;Park, Young-Ho;Kim, Byeong-Hun;Son, Seong-Gi
    • Korean Journal of Veterinary Service
    • /
    • v.30 no.1
    • /
    • pp.13-21
    • /
    • 2007
  • An atmospheric pressure chemical ionization (APcI) LC/MS/MS method was developed for the simultaneous analysis of fluoroquinolones (norfloxacin, ciprofloxacin, enrofloxacin, danofloxacin) residues in eggs. The spiked and blank samples were extracted from whole eggs using 50mM phosphate buffer (pH 7.4). The extract was cleaned up by passage though $Oasis^{(R)}$ MAX extraction cartridge for solid-phase extraction followed by elution with 4% formic acid in methanol. The extract of sample was separated on a Waters $Atlantis^{TM}$ $dC_{18}$ reversed-phase column ($4.6{\times}150mm,\;5{\mu}m$) and analyzed by APcI positive mode mass spectrometry. The mobile phase consists of aqueous 0.2% nonafluoropentanoic acid (NFPA) and methanol. Multiple reaction monitoring (MRM) using the precursor to product ion combinations of m/z $320\;{\dashrightarrow}\;302,\;332\;{\dashrightarrow}\;314,\;360\;{\dashrightarrow}\;342$ and m/z $358\;{\dashrightarrow}\;340$ were used to quantify norfloxacin (NOR), ciprofloxacin (CIP), enrofloxacin (ENR) and danofloxacin (DAN), respectively. The limits of quantification (LOQ) were 7.8ppb for NOR, 8.5ppb for CIP, 8.9ppb for ENR, and 4.8ppb for DAN. Average recoveries of fortified sample at levels of 0.025 to 0.1 ppm were estimated 71.29% for NOR, 75.27% for CIP, 85.51% for ENR and 81.22% for DAN. These results could be applied for the confirmation and quantification in eggs.

Shear Resistance of CIP Anchors under Dynamic Loading: Unreinforced Anchor (선설치앵커의 동적 전단하중에 대한 저항강도: 비보강 앵커)

  • Park, Yong Myung;Kang, Moon Ki;Kim, Dong Hyun;Lee, Jong Han;Kang, Choong Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.1
    • /
    • pp.11-20
    • /
    • 2014
  • The Concrete Capacity Design(CCD) method has been used in the design of anchor since 2001 and Korean design code specify that concrete breakout capacity of CIP anchor under seismic load shall be taken as 75% of static capacity. In this study, an experimental study was performed to evaluate the concrete breakout capacity of unreinforced CIP anchors under dynamic shear force. For the purpose, three static and dynamic shear-loading tests were conducted using 20mm diameter anchors, respectively. The edge distance of 120mm was considered in the tests. In the dynamic tests, 15 cycles pulsating load with 1Hz speed was applied and the magnitude of loading step was increased until concrete breakout failure occurs. From the tests, the concrete breakout capacity under dynamic shear loading showed nearly same capacity by static loading.