• Title/Summary/Keyword: CI engine

Search Result 73, Processing Time 0.027 seconds

Fuel Injection System on Combustion and Exhaust Emissions Characteristics in Compression Ignition Engines (압축착화 엔진에서 디젤-가솔린 Dual Fuel이 연소 및 배기 특성에 미치는 영향)

  • Kwon, Seok-Joo;Cha, June-Pyo;Sung, Ki-An;Park, Sung-Wook
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.1
    • /
    • pp.52-57
    • /
    • 2011
  • The present study describes the characteristics of combustion and exhaust emissions in compression ignition engines using diesel-gasoline dual fuel. For investigating combustion characteristics, diesel fuel was injected directly in a single-cylinder compression ignition engine with a common-rail injection system and gasoline fuel was injected into a premixed chamber installed in an intake port. In order to investigate exhaust emission characteristics, exhaust gas was measured by emission analyzer and smoke meter. The experimental results showed that cases of diesel-gasoline dual fuel combustion exhibited extended ignition delay and reduced peak combustion pressure compared to those of directly injected diesel fuel cases. Furthermore, premixed gasoline-air mixture reduced NOx emissions due to low peak of rate of heat release(ROHR).

Dual-Fuel Combustion Phenomena of Pilot Distillate Injected to Pre-mixed Natural Gas in a Constant Volume Combustion Bomb (천연가스가 예혼합된 정적연소실에 파일럿오일을 분사한 복합연소현상)

  • Choi, I.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.6
    • /
    • pp.112-122
    • /
    • 1995
  • As an alternative fuel producing less exhaust emissions, natural gas is of interest for use both in SI and CI engines. The potential of natural gas fuelled dual-fuel engine is considered high enough. However, much effort has to be made so that gaseous fuel is used efficiently with simultaneous minimum use of pilot oil. Hence, a simplified three-dimensional model, using a finite volume method in cylindrical coordinates, has been developed to facilitate an understanding of the dual-fuel combustion phenomena and to predict the complex interactions between the pilot distillate and natural gas. The computer model was calibrated by comparing it with the experimental results obtained from diesel engine like combustion bomb tests. In the pre-mixed natural gas combustion, the fuel burning was highly reliant on the injection condition and subsequent burning nature of the pilot distillate.

  • PDF

Effects of DME/Diesel as an ignition promoter on combustion of hydrogen homogeneous charge compression ignition (수소-예혼합 압축착화 엔진에서 착화제인 DME/diesel이 엔진 연소에 미치는 영향)

  • Jeon, Jeeyeon;Park, Hyeonwook;Bae, Choonsik
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.37-40
    • /
    • 2013
  • Hydrogen-dimethy ether (DME) and hydrogen-diesel compression ignition engine combustion were investigated and compared each other in a single cylinder compression ignition engine. Hydrogen and DME were used as low carbon alternative fuels to reduce green house gases and pollutant. Hydrogen was injected at the intake manifold with an injection pressure of 0.5 MPa at fixed injection timing, $-210^{\circ}CA$ aTDC. DME and diesel were injected directly into the cylinder through the common-rail injection system at injection pressure of 30 MPa. DME and diesel inejction timing was varied to find the optimum CI combustion to reduce CO, HC and NOx emissions. When DME was injected early, CO and HC emissions were high while NOx emission was low. Fuel consumption, heat release rate, and exhaust emissions were measured to analyze each combustion characteristics of each ignition promoter. Fuel consumption was decreased when diesel was used as an ignition promoter. This is due to the lower volatility of diesel which created more stratified charge than DME.

  • PDF

Effect of Intake Pressure on Emissions and Performance in Low Temperature Combustion Operation of a Diesel Engine (디젤 저온연소 운전 영역에서 흡기압이 엔진 성능에 주는 영향)

  • Lee, Sun-Youp;Chang, Jae-Hoon;Lee, Yong-Gyu;Oh, Seung-Mook;Kim, Yong-Rae;Kim, Duk-Sang
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.1
    • /
    • pp.88-94
    • /
    • 2012
  • One of the effective ways to reduce both $NO_x$ and PM at the same time in a diesel CI engine is to operate the engine in low temperature combustion (LTC) regimes. In general, two strategies are used to realize the LTC operation-dilution controlled LTC and late injection LTC - and in this study, the former approach was used. In the dilution controlled regime, LTC is achieved by supplying a large amount of EGR to the cylinder. The significant EGR gas increases the heat capacity of in-cylinder charge mixture while decreasing oxygen concentration of the charge, activating low temperature oxidation reaction and lowering PM and $NO_x$ emissions. However, use of high EGR levels also deteriorates combustion efficiency and engine power output. Therefore, it is widely considered to use increased intake pressure as a way to resolve this issue. In this study, the effects of intake pressure variations on performance and emission characteristics of a single cylinder diesel engine operated in LTC regimes were examined. LTC operation was achieved in less than 8% $O_2$ concentration and thus a simultaneous reduction of both PM and $NO_x$ emission was confirmed. As intake pressure increased, combustion efficiency was improved so that THC and CO emissions were decreased. A shift of the peak Soot location was also observed to lower $O_2$ concentration while $NO_x$ levels were kept nearly zero. In addition, an elevation of intake pressure enhanced engine power output as well as indicated thermal efficiency in LTC regimes. All these results suggested that LTC operation range can be extended and emissions can be further reduced by adjusting intake pressure.

LPG-DME Compression Ignition Engine with Intake Variable Valve Timing (LPG-DME 압축착화 엔진에서 흡기 가변밸브 영향)

  • Yeom, Ki-Tae;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.2
    • /
    • pp.158-165
    • /
    • 2008
  • The combustion and exhaust emissions characteristics of a liquefied petroleum gas-di-methyl ether compression ignition engine with a variable valve timing device were investigated under various liquefied petroleum gas injection timing conditions. Liquefied petroleum gas was used as the main fuel and was injected directly into the combustion chamber. Di-methyl ether was used as an ignition promoter and was injected into the intake port. Different liquefied petroleum gas injection timings were tested to verify the effects of the mixture homogeneity on the combustion and exhaust emission characteristics of the liquefied petroleum gas-di-methyl ether compression ignition engine. The average charge temperature was calculated to analyze the emission formation. The ringing intensity was used for analysis of knock characteristics. The combustion and exhaust emission characteristics differed significantly depending on the liquefied petroleum gas injection and intake valve open timings. The CO emission increased as the intake valve open and liquefied petroleum gas injection timings were retarded. However, the particulate matter emission decreased and the nitrogen oxide emission increased as the intake valve open timing was retarded in the diffusion combustion regime. Finally, the combustion efficiency decreased as the intake valve open and liquefied petroleum gas injection timings were retarded.

Design and Implementation of Knowledge Base System for Fault Diagnosis (고장진단을 위한 지식기반 시스템의 설계 및 구현)

  • Jeon, Keun-Hwan;Shin, Sung-Yun;Shin, Jeong-Hun;Lee, Yang-Won;Ryu, Keun-Ho
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.38 no.6
    • /
    • pp.57-69
    • /
    • 2001
  • Expert system is one of AI area. It simulates the human's way of thinking to give solutions of problem in many applications. Most expert system consists of many components such as inference engine, knowledge base, and so on. Especially the performance of expert system depend on the control of efficiency of inference engine. Inference engine has to get features; first, if possible to minimize restrictions when it constructed the knowledge base. second, it has to serve various kinds of inferencing methods. In this paper we propose knowledge scheme for representing domain knowledge in ease, knowledge implementation technique for inferencing, and integrated knowledge-base engine with blackboard and inference engine. And we describe a expert system prototype that implemented in this paper using proposed methods, it perform diagnose about heavy industrial device. The fault diagnosis system prototype has been studied in this paper will be practical foundation in the research area of knowledge based system.

  • PDF

A Review on Spray Characteristics of Bioethanol and Its Blended Fuels in CI Engines

  • No, Soo-Young
    • Journal of ILASS-Korea
    • /
    • v.19 no.4
    • /
    • pp.155-166
    • /
    • 2014
  • This review will be concentrated on the spray characteristics of bioethanol and its derived fuels such as ethanol-diesel, ethanol-biodiesel in compression ignition (CI) engines. The difficulty in meeting the severe limitations on NOx and PM emissions in CI engines has brought about many methods for the application of ethanol because ethanol diffusion flames in engine produce virtually no soot. The most popular method for the application of ethanol as a fuel in CI engines is the blending of ethanol with diesel. The physical properties of ethanol and its derivatives related to spray characteristics such as viscosity, density and surface tension are discussed. Viscosity and density of e-diesel and e-biodiesel generally are decreased with increase in ethanol content and temperature. More than 22% and 30% of ethanol addition would not satisfied the requirement of viscosity and density in EN 590, respectively. Investigation of neat ethanol sprays in CI engines was conducted by very few researchers. The effect of ambient temperature on liquid phase penetration is a controversial topic due to the opposite result between two studies. More researches are required for the spray characteristics of neat ethanol in CI engines. The ethanol blended fuels in CI engines can be classified into ethanol-diesel blend (e-diesel) and ethanol-biodiesel (e-biodiesel) blend. Even though dodecanol and n-butanol are rarely used, the addition of biodiesel as blend stabilizer is the prevailing method because it has the advantage of increasing the biofuel concentration in diesel fuel. Spray penetration and SMD of e-diesel and e-biodiesel decrease with increase in ethanol concentration, and in ambient pressure. However, spray angle is increased with increase in the ethanol percentage in e-diesel. As the ambient pressure increases, liquid phase penetration was decreased, but spray angle was increased in e-diesel. The increase in ambient temperature showed the slight effect on liquid phase penetration, but spray angle was decreased. A numerical study of micro-explosion concluded that the optimum composition of e-diesel binary mixture for micro-explosion was approximately E50D50, while that of e-biodiesel binary mixture was E30B70 due to the lower volatility of biodiesel. Adding less volatile biodiesel into the ternary mixture of ethanol-biodiesel-diesel can remarkably enhance micro-explosion. Addition of ethanol up to 20% in e-biodiesel showed no effect on spray penetration. However, increase of nozzle orifice diameter results in increase of spray penetration. The more study on liquid phase penetration and SMD in e-diesel and e-biodiesel is required.

Effect of Injection Pressure on Low Temperature Combustion in CI Engines (압축착화 엔진에서 분사압이 저온연소에 미치는 영향)

  • Jang, Jaehoon;Lee, Sunyoup;Lee, Yonggyu;Oh, Seungmook;Lee, Kihyung
    • Journal of ILASS-Korea
    • /
    • v.18 no.1
    • /
    • pp.21-26
    • /
    • 2013
  • Diesel low temperature combustion (LTC) is the concept where fuel is burned at a low temperature oxidation regime so that $NO_x$ and particulate matters (PM) can simultaneously be reduced. There are two ways to realize low temperature combustion in compression ignition engines. One is to supply a large amount of EGR gas combined with advanced fuel injection timing. The other is to use a moderate level of EGR with fuel injection at near TDC which is generally called Modulated kinetics (MK) method. In this study, the effects of fuel injection pressure on performance and emissions of a single cylinder engine were evaluated using the latter approach. The engine test results show that MK operations were successfully achieved over a range of with 950 to 1050 bar in injection pressure with 16% $O_2$ concentration, and $NO_x$ and PM were significantly suppressed at the same time. In addition, with an increase in fuel injection pressure, the levels of smoke, THC and CO were decreased while $NO_x$ emissions were increased. Moreover, as fuel injection timing retarded to TDC, more THC and CO emissions were generated, but smoke and $NO_x$ were decreased.

The Effect of Dachaihu Decoction for Hyperlipidemic Acute Pancreatitis: A Systematic Review and Meta-Analysis (고지혈성 급성 췌장염에 대한 대시호탕의 효과 : 체계적 문헌고찰과 메타분석)

  • Kim, Yoon-jung;Jung, Yu-jin;Park, Dong-il
    • The Journal of Internal Korean Medicine
    • /
    • v.41 no.3
    • /
    • pp.306-325
    • /
    • 2020
  • Objectives: The aim of this study is to investigate the effect of a Dachaihu decoction for hyperlipidemic acute pancreatitis (HLAP) by systematic review and meta-analysis of Chinese clinical studies. Methods: China National Knowledge Infrastructure (CNKI) was utilized as the major search engine. The date of the literature search was March 7, 2020. Randomized controlled trials (RCTs) about using a Dachaihu decoction for HLAP were included in this study. Meta-analysis was performed by synthesizing outcome data, including total effective rate, abdomen pain relief time, first bowel movement time, blood amylase recovery time, and triglyceride (TG) levels (mmol/L). The selected literature was assessed using Cochrane's risk of bias (RoB). Results: Twelve of 44 RCTs met the inclusion criteria. Most studies were evaluated with RoB as having unclear risk. The total effective rate of herbal medicine treatment based on the Dachaihu decoction was significantly higher than that of symptomatic supportive treatment in 10 articles (risk ratio=1.15, 95% CI: 1.08 to 1.21, p<0.00001, I2=0%). Herbal medicine treatment based on a Dachaihu decoction was significantly more effective than symptomatic supportive treatment in terms of reducing abdomen pain relief time (in all articles; mean difference=-1.70, 95% CI: -1.91 to -1.41, p<0.00001, I2=45%), first bowel movement time (in 7 articles; mean difference=-1.46, 95% CI: -1.86 to -1.05, p<0.00001, I2=73%), blood amylase recovery time (in 8 articles; mean difference=-1.48, 95% CI: -2.04 to -0.92, p<0.00001, I2=90%), and TG levels (in 8 articles; mean difference=-1.59, 95% CI: -2.28to -0.91, p<0.00001, I2=90%). Only one article reported side effects of treatment among the intervention group and control group, citing pancreatic ulcer and pancreatic pseudocyst formation. Conclusions: This study suggests that herbal medicine treatment based on a Dachaihu decoction could yield higher efficacy for HLAP than symptomatic supportive treatment alone. However, the results might be somewhat biased because of the poor quality and small sample size of the included RCTs. Well-qualified clinical studies are needed to prove the effectiveness of Dachaihu decoction therapy for HLAP.

Channel Set Manager Development and Performance Analysis for Cognitive Radio System (인지 무선 시스템을 위한 채널 집합 관리기의 개발 및 성능 분석)

  • Park, Chang-Hyun;Song, Myung-Sun
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.5
    • /
    • pp.8-14
    • /
    • 2008
  • There are two a approaches for the Cognitive Radio(CR) development. One is 'Full CR', which Joseph Mitola III proposed, and another is 'Spectrum CR', which is currently being standardized. The target approach of this paper is the latter and we develop a Cognitive Engine(CE) and simulated a channel set management(CSM), which is a core function of CE. The Channel set management evaluates channel quality and Incumbent User(IU) vacancy possibility and classifies the channel set, which is performed by using channel state history. Especially, a very important function for the channel set management is a channel state prediction and this paper proposed a Hidden Markov Model(HMM) based channel state prediction and a method for increasing performance. Also, we applied the proposed method into our simulator and simulated channel state prediction. Through the simulation, we verified as we applied our proposed scheme, the performance of channel state prediction gets better and through comparing with RS and SS, we verified the HMM based Channel state prediction is better.