• Title/Summary/Keyword: CI (Coupled Inductor)

Search Result 4, Processing Time 0.02 seconds

Design and Analysis of a 7kW LDC using Coupled Inductor for Heavy Hydrogen Electric Transport Vehicle (Coupled Inductor를 사용한 대형수소전기화물차용 7kW급 저전압 컨버터의 설계 및 분석)

  • Heo, Gyeong-Hyeon;Lee, Woo-Seok;Choi, Seung-Won;Lee, Il-Oun;Song, Hyung-Suk;Lee, Jun-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.1
    • /
    • pp.37-43
    • /
    • 2020
  • This study proposes a 7kW low-voltage DC-DC converter (LDC) using a coupled inductor (CI) for heavy hydrogen electric transport vehicles. The LDC uses a phase-shift manner for soft switching. SiC-MOSFET is used to reduce the loss of reverse recovery current through the use of a high switching frequency. LDC is require large transformer and inductor because of large output current. The size of transformer and inductor can be reduced by deviding the transformer and inductor into two pieces each. This work presents the experimental results of the proposed circuit.

Development of a 7kW LDC for Heavy Hydrogen Electric Transport Vehicle Using Coupled Inductor (Coupled Inductor를 사용한 대형수소전기화물차용 7kW급 LDC 개발)

  • Heo, Gyeong Hyeon;Choi, Jin Yong;Choi, Seung Won;Lee, Il Oun;Lee, Jun Young;Song, Hyung Suk
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.263-264
    • /
    • 2019
  • 본 논문에서는 대형수소전기화물차용으로써 CI(Coupled Inductor)를 적용한 7kW급 LDC(Low-Voltage DC-DC Converter)를 제안한다. ZVS(Zero Voltage Switching)를 통한 소프트 위칭을 위해 위상천이(Phase shift) 방식으로 제어하고 SiC MOSFET을 사용함으로써 높은 스위칭 주파수와 역회복전류의 손실 저감을 통해 효율을 증대시킨다. 아울러 변압기를 2개로 나누어 자기 소자에 가해지는 부담을 줄이는 동시에 병렬 회로 사이에 CI를 연결하여 각 자기 소자 간의 전력 균형을 유지한다. 제안한 회로에 대한 실험 결과를 발표한다.

  • PDF

A Novel Dual-Input Boost-Buck Converter with Coupled Inductors for Distributed Thermoelectric Generation Systems

  • Zhang, Junjun;Wu, Hongfei;Sun, Kai;Xing, Yan;Cao, Feng
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.899-909
    • /
    • 2015
  • A dual-input boost-buck converter with coupled inductors (DIBBC-CI) is proposed as a thermoelectric generator (TEG) power conditioner with a wide input voltage range. The DIBBC-CI is built by cascading two boost cells and a buck cell with shared inverse coupled filter inductors. Low current ripple on both sides of the TEG and the battery are achieved. Reduced size and power losses of the filter inductors are benefited from the DC magnetic flux cancellation in the inductor core, leading to high efficiency and high power density. The operational principle, impact of coupled inductors, and design considerations for the proposed converter are analyzed in detail. Distributed maximum power point tracking, battery charging, and output control are implemented using a competitive logic to ensure seamless switching among operational modes. Both the simulation and experimental results verify the feasibility of the proposed topology and control.

Research for Distributed Design for 30kW Full-Bridge Converter for in High Frequency Welding Machine (30kW 고주파 용접 전원용 Full-Bridge 컨버터의 분산설계에 관한 연구)

  • Kim, Min-Woo;Choi, Seung-Won;Lee, Il-Oun;Lee, Jun-Young;Jeong, Kye-Soo;Ito, Ei-Ji
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.6
    • /
    • pp.469-476
    • /
    • 2020
  • This study presents the results of the research on power supplies for welding machine using MOSFET switches in high frequency switching for ease of design and use a 100 kHz switching frequency for high power density. The topology of the proposed power supplies for welding machine is ZVS-PWM full-bridge converter. The proposed converter is designed on a distributed transformer for ease of design and be used in a 100 kHz switching frequency for high power density. The problem of power imbalance of transformers occurring in parallel operation of transformers can be improved by applying common mode coupled inductor and the corresponding contents are experimented and verified in this paper to present conclusions.