As the development of information technology, the biggest change in educational paradigm is apparent in the shift that the emphasis of education is layed on from teachers to learners. E-learning education service through the internet is less restricted in the respect of time and places in comparison with off-line education. Therefore e-Learning is spreaded rapidly and the educational effectiveness of that is needed to be investigated. In this study theoretical research was performed firstly and framework of the study was constructed. After establishment of hypotheses the survey data were collected by the learners of e-Learning and the hypotheses were verified by the SPSS version 12.0. The results are as follows : First, the quality of e-Learning service influences significantly to the technology acceptance of users. Secondly, perceived usability and perceived easiness of technology acceptance model influences significantly to the intention of reuse of users of e-Learning services. Lastly, the playfulness of the Flow theory influences significantly to the intention of reuse of users of e-Learning services. Although there are some limitations in the respect of the numbers of variables, parameters, or samples, this study will contribute for enhancing the effectiveness of education in e-Learning service by providing the acceptance factors of e-learners.
Journal of The Korean Association of Information Education
/
v.13
no.1
/
pp.77-84
/
2009
Along with developments of information and communication technologies, internet has spread not only all over the society, but also our everyday life deeply. Also requirements for e-learning using internet in the educational aspect have a great influence on the changes of school educations. The benefits of e-learning are many, including cost-effectiveness, enhanced responsiveness to change, consistency, and timely contents. Therefore, the e-learning has been introduced to the universities. However, the e-learning is operated inefficiently because of introduction to the university with no definite idea about effects of education and economy in the university. Therefore, in this paper we analysed the category of e-learning based the curriculum operation forms in the university, surveyed tests about students preference and the studied what is desirable e-learning operation forms.
Climate change has emerged as a global problem, with frequent temperature increases, droughts, and floods, and it is predicted that it will have a great impact on the characteristics and productivity of crops. Cnidium officinale is used not only as traditionally used herbal medicines, but also as various industrial raw materials such as health functional foods, natural medicines, and living materials, but productivity is decreasing due to threats such as continuous crop damage and climate change. Therefore, this paper proposes a model that can predict the physiologically active ingredient index according to the climate change scenario of Cnidium officinale, a representative medicinal crop vulnerable to climate change. In this paper, data was first augmented using the CTGAN algorithm to solve the problem of data imbalance in the collection of environment information, physiological reactions, and physiological active ingredient information. Column Shape and Column Pair Trends were used to measure augmented data quality, and overall quality of 88% was achieved on average. In addition, five models RF, SVR, XGBoost, AdaBoost, and LightBGM were used to predict phenol and flavonoid content by dividing them into ground and underground using augmented data. As a result of model evaluation, the XGBoost model showed the best performance in predicting the physiological active ingredients of the sacrum, and it was confirmed to be about twice as accurate as the SVR model.
Journal of Korean Home Economics Education Association
/
v.34
no.3
/
pp.67-83
/
2022
This study was designed to develop a sustainable clothing life education program for middle school students and to analyze the effects of the developed program on the "Change-maker" characteristics of adolescents. This study proceeded following the ADDIE teaching design model. The learning activities in the middle school Technology and Home Economics textbooks were analyzed according to the steps of the Change-maker education program. Based on the analyzed results, the sustainable clothing life education program entitled 'Clothes for us, actions for the earth' which includes ten teaching and learning process plans, 17 individual learning activity sheets, and seven group learning activity sheets was developed. The developed program was implemented on 285 first-year students in K middle School in Ulsan. After the class, the level of Change-maker characteristics of the students increased from 3.87(SD=.54) to 4.59(SD=.64). From the interviews of the students, it was also found that the developed program influenced the values and behaviors of the students. Therefore it was confirmed that the Education for Sustainable Development(ESD) program on clothing life in middle school Home Economics developed based on the Change-maker education program stage was effective in cultivating the Change-maker characteristics of adolescents.
The Journal of the Korea institute of electronic communication sciences
/
v.13
no.2
/
pp.391-396
/
2018
A variety of experiments are being conducted with the advent of Learning Model for flipped-learning. In order to apply flipped-learning as a method of teaching, most of them require a pre-prepared learning video. In this case, there is the burden to create the samples of a 13 weeks, except for the mid term and the final exam in college. These systems also make it difficult to change learning content. In this paper, we suggest using blogs to improve the characteristics that existing flippling systems are less adaptable to environmental changes. A blog can be a good thing for learners who are comfortable with the Internet, In this study, we experiment with flipped-learning, which applies blog to one subject. As a result, we would like to evaluate the meaningful learning effects of this study.
This study aimed at finding points of improvement in teaching expertise by analyzing the question patterns that appeared during teaching demonstrations which applied science teaching models prepared by a pre-service biology teacher. The question analysis frame for analyzing question types were categorized largely into the question types of Category 1 (questions in cognitive domain, questions with research function, questions in affective domain), Category 2 (repeated questions, questions for narrowing the range, practice questions), and Category 3 (questions on student activity progress, memory questions, and thinking questions). The results of analyzing question patterns from five different science teaching models revealed a high frequency of questions in the fields of cognition and memory. For the circular learning model, questions from the cognitive field appeared the most often, while, student activity progressive questions in particular were used mostly in the 'preliminary concept introduction stage' of the circular learning model and the 'secondary exploratory stage', in which experiments were conducted, and displayed the characteristics of these stages. The discovery learning model combined the courses of observation, measurement, classification and generalization, but, during teaching demonstrations, memory questions turned up the most, while the portion of inquisitive function questions was low. There were many questions from the inquisitive learning model, and, compared to other learning models, many exploratory function questions turned up during the 'experiment planning stage' and 'experiment stage'. Definitional questions and thought questions for the STS learning model turned up more than other learning models. During the change of concept learning model, the five concepts of students were stimulated and the modification of scientific concepts was very much aided by using many memory questions.
Journal of the Korean Operations Research and Management Science Society
/
v.37
no.4
/
pp.73-93
/
2012
In recent years, service delivery systems employing a self-service approach have been rapidly spreading. Since a self-service system provides a lower product price, it attracts more customers. However, some system managers are still hesitant to accept a self-service system, because there is no systematic model to predict its performance. Therefore, this research attempts to provide a systematic and quantitative model to predict the performance of a self-service system, focused specifically on a self-service gas station. Under this model, the traditional queuing theory was adopted to describe the general self-service process, but it is also assumed that some changes occur in both the customer arrival rate and the service performance rate. In particular, the price elasticity was introduced to capture the change in the customer arrival rate, and the existence of learning effect and helpers were assumed to design the changed service performance rate. Under these assumptions, a simulation model for a self-service gas station is established, and three performance measurements, such as average number of customers, average waiting time, and Utilization are observed, depending on the changes in price difference and helper-operating time. In this research, the optimal operation strategy for price differentiation and helper-operating time is proposed in accordance with the level of the customer learning rate. Although this research confines the scope of the study to the self-service gas station model, the results of this research can be applied to any type of self-service system.
The electricity cost of a desalination facility was also predicted and reviewed, which allowed the proposed model to be incorporated into the future design of such facilities. Input data from 2003 to 2014 of the Korea Hydrographic and Oceanographic Agency (KHOA) were used, and the structure of the model was determined using the trial and error method to analyze as well as hyperparameters such as salinity and seawater temperature. The future seawater quality was estimated by optimizing the prediction model based on machine learning. Results indicated that the seawater temperature would be similar to the existing pattern, and salinity showed a gradual decrease in the maximum value from the past measurement data. Therefore, it was reviewed that the electricity cost for seawater desalination decreased by approximately 0.80% and a process configuration was determined to be necessary. This study aimed at establishing a machine-learning-based prediction model to predict future water quality changes, reviewed the impact on the scale of seawater desalination facilities, and suggested alternatives.
Journal of The Korean Association For Science Education
/
v.17
no.3
/
pp.323-332
/
1997
In order to use analog more systematically in science class, an instructional model was designed on the basis of analogical reasoning processes (encoding, inference, mapping, application, and response) in the Sternberg's component process theory. The model has five phases (introducing target context, cue retrieval of analog context, mapping similarity and drawing target concept, application, and elaboration), and the instructional effects of using the model upon students' comprehension of science concepts and motivation level of learning were investigated. The treatment and control groups (1 class each) were selected from 8th-grade classes and taught about chemical change and chemical reaction for the period of 10 class hours. The treatment group was taught with the materials based on the model, while the control group was taught in traditional instruction without using analog. Before the instructions, modified versions of the Patterns of Adaptive Learning Survey and the Group Assessment of Logical Thinking were administered, and their scores were used as covariates for students' conceptions and motivational level of learning, respectively. Analogical reasoning ability test was also administered, and its score was used as a blocking variable. After the instructions, students' conceptions were measured by a researcher-made science conception test, and their motivational level of learning was measured by a modified version of the Instructional Materials Motivation Scale. The results indicated that the adjusted mean score of the conception test for the treatment group was significantly higher than that of the control group at .01 level of significance. No significant interaction between the instruction and the analogical reasoning ability was found. Although the motivational level of learning for the treatment group was higher than that for the control group, the difference was found to be statistically insignificant. Educational implications are discussed.
Seo, Jaehong;Park, Junsung;Yoo, Joonwoo;Park, Heejun
Journal of Korean Society for Quality Management
/
v.49
no.4
/
pp.581-594
/
2021
Purpose: The purpose of this study is to compare machine learning models for anomaly detection of mechanical facility equipment and suggest an anomaly detection system for mechanical facility equipment in subway stations. It helps to predict failures and plan the maintenance of facility. Ultimately it aims to improve the quality of facility equipment. Methods: The data collected from Daejeon Metropolitan Rapid Transit Corporation was used in this experiment. The experiment was performed using Python, Scikit-learn, tensorflow 2.0 for preprocessing and machine learning. Also it was conducted in two failure states of the equipment. We compared and analyzed five unsupervised machine learning models focused on model Long Short-Term Memory Variational Autoencoder(LSTM-VAE). Results: In both experiments, change in vibration and current data was observed when there is a defect. When the rotating body failure was happened, the magnitude of vibration has increased but current has decreased. In situation of axis alignment failure, both of vibration and current have increased. In addition, model LSTM-VAE showed superior accuracy than the other four base-line models. Conclusion: According to the results, model LSTM-VAE showed outstanding performance with more than 97% of accuracy in the experiments. Thus, the quality of mechanical facility equipment will be improved if the proposed anomaly detection system is established with this model used.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.