• Title/Summary/Keyword: CHANGE OF TEMPERATURE

Search Result 10,010, Processing Time 0.049 seconds

Theoretical Study on Optimal Conditions for Absorbent Regeneration in CO2 Absorption Process (이산화탄소 흡수 공정에서 흡수액 최적 재생 조건에 대한 이론적 고찰)

  • Park, Sungyoul
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.1002-1007
    • /
    • 2012
  • The considerable portion of energy demand has been satisfied by the combustion of fossil fuel and the consequent $CO_2$ emission was considered as a main cause of global warming. As a technology option for $CO_2$ emission mitigation, absorption process has been used in $CO_2$ capture from large scale emission sources. To set up optimal operating parameters in $CO_2$ absorption and solvent regeneration units are important for the better performance of the whole $CO_2$ absorption plant. Optimal operating parameters are usually selected through a lot of actual operation data. However theoretical approach are also useful because the arbitrary change of process parameters often limited for the stability of process operation. In this paper, a theoretical approach based on vapor-liquid equilibrium was proposed to estimate optimal operating conditions of $CO_2$ absorption process. Two $CO_2$ absorption processes using 12 wt% aqueous $NH_3$ solution and 20 wt% aqueous MEA solution were investigated in this theoretical estimation of optimal operating conditions. The results showed that $CO_2$ loading of rich absorbent should be kept below 0.4 in case of 12 wt% aqueous $NH_3$ solution for $CO_2$ absorption but there was no limitation of $CO_2$ loading in case of 20 wt% aqueous MEA solution for $CO_2$ absorption. The optimal regeneration temperature was determined by theoretical approach based on $CO_2$ loadings of rich and lean absorbent, which determined to satisfy the amount of absorbed $CO_2$. The amount of heating medium at optimal regeneration temperature is also determined to meet the difference of $CO_2$ loading between rich and lean absorbent. It could be confirmed that the theoretical approach, which accurately estimate the optimal regeneration conditions of lab scale $CO_2$ absorption using 12 wt% aqueous $NH_3$ solution could estimate those of 20 wt% aqueous MEA solution and could be used for the design and operation of $CO_2$ absorption process using chemical absorbent.

Interface Reaction of Molten Converter Slag and Sintered CaO Pellet (용융 전로슬래그와 소결 CaO 펠렛 사이의 계면반응)

  • Kim Yaung-Hwan;Ko In-Yang
    • Resources Recycling
    • /
    • v.13 no.1
    • /
    • pp.47-53
    • /
    • 2004
  • As a basic study of the re-using molten converter slag as an ordinary portland cement by conversion process, molten slag and sintered CaO pellet was reacted each other. The dissolution rate of the sintered CaO pellet into the molten slag was measured and the changes of the reaction layer was also investigated. The converter slag reagent-grade $SiO_2$ added was melted and hold for 30 minutes in MgO crucible between $1350∼1500 ^{\circ}C$. Then sintered CaO pellet heated at the same temperature was dipped into the molten slag and hold for 10∼30 min. After the reaction, the crucible was cooled in air and the specimen was cut off to the horizontal direction of the crucible. The dissolution rate of CaO pellet was measured by the change of the radius of sintered CaO pellet and the interface layer was observed by SEM/EDX and XRD. The dissolution rate of sintered CaO pellet contacted with the slag of basicity 1 was 9.8 $\mu\textrm{m}$/min at $1350^{\circ}C$ and increased to 18.0 $\mu\textrm{m}$/min at $1500^{\circ}C$. The rate was slightly decreased to 7.6 $\mu\textrm{m}$/min at $1350^{\circ}C$ and 15.0 $\mu\textrm{m}$/min at $V^{\circ}C$ in the slag of basicity 2. The dissolution rate of CaO in converter slag was followed to the rule of Arrhenius' temperature dependency, and the apparent activation energy of the dissolution of CaO was 36 kcal/mole. In case of the slag basicity of 1, the thickness of $C_2$S layer was 64-118 $\mu\textrm{m}$ and the thickness of $C_3$S was 28∼90 $\mu\textrm{m}$ for 10∼30 minutes at $1500^{\circ}C$. And the thickness of the $C_3$S layer was 90∼120 $\mu\textrm{m}$ at the same conditions in the slag basicity of 2.

The Effect of Aroma Therapy on Lower Extremity Edema of Terminal Cancer Patients: A Controlled Trial (아로마 요법이 말기 암 환자의 하지부종에 미치는 영향 - 대조군 연구)

  • Kim, Sung-Ah;Kim, Sung-Ju;Chung, Ju-Hye;Lee, Soo-Young;Han, Myung-Suk;Oh, Seon-Hee;Kim, Se-Hong
    • Journal of Hospice and Palliative Care
    • /
    • v.12 no.3
    • /
    • pp.139-146
    • /
    • 2009
  • This study was designed to examine the effect of aroma massage therapy on lower extremity edema of terminal cancer patients. Methods: A total of thirty-six terminal cancer patients with lower extremity edema were divided into two groups: the aroma massage group received massage with blending oil which was applied from toes to 10 cm above the knee of the subject for 15 to 20 minutes in each turn, while the control group received sham aroma massage (applied with carrier oil only). The circumferences of the fore-foot, ankle and calf were measured before massage and 30 minutes, 2 hours, and 12 hours after massage. The blood pressure, pulse and body temperature were also measured to find the change of subject's physiologic conditions. Results: There were no significant differences in blood pressure, heart rate, body temperature and lower extremity circumferences between two groups. However, edema at each site was slightly improved in the treatment group after the aroma massage therapy, compared to baseline data (P<0.05). In addition, the reduction of lower extremity circumference was maximal at 2 hours in foot, 30 min in right ankle and 12 hours in right calf after aroma massage therapy (P<0.05). Conclusion: Our results suggest that aroma massage therapy is not effective on the lower extremity edema of terminal cancer patients.

  • PDF

Errors in Net Ecosystem Exchanges of CO2, Water Vapor, and Heat Caused by Storage Fluxes Calculated by Single-level Scalar Measurements Over a Rice Paddy (단일 높이에서 관측된 저장 플럭스를 사용할 때 발생하는 논의 이산화탄소, 수증기, 현열의 순생태계교환량 오차)

  • Moon, Minkyu;Kang, Minseok;Thakuri, Bindu Malla;Lee, Jung-Hoon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.3
    • /
    • pp.227-235
    • /
    • 2015
  • Using eddy covariance method, net ecosystem exchange (NEE) of $CO_2$ ($F_{CO_2}$), $H_2O$ (LE), and sensible heat (H) can be approximated as the sum of eddy flux ($F_c$) and storage flux term ($F_s$). Depending on strength and distribution of sink/source of scalars and magnitude of vertical turbulence mixing, the rates of changes in scalars are different with height. In order to calculate $F_s$ accurately, the differences should be considered using scalar profile measurement. However, most of flux sites for agricultural lands in Asia do not operate profile system and estimate $F_s$ using single-level scalars from eddy covariance system under the assumption that the rates of changes in scalars are constant regardless of the height. In this study, we measured $F_c$ and $F_s$ of $CO_2$, $H_2O$, and air temperature ($T_a$) using eddy covariance and profile system (i.e., the multi-level measurement system in scalars from eddy covariance measurement height to the land surface) at the Chengmicheon farmland site in Korea (CFK) in order to quantify the differences between $F_s$ calculated by single-level measurements ($F_s_{-single}$ i.e., $F_s$ from scalars measured by profile system only at eddy covariance system measurement height) and $F_s$ calculated by profile measurements and verify the errors of NEE caused by $F_s_{-single}$. The rate of change in $CO_2$, $H_2O$, and Ta were varied with height depending on the magnitudes and distribution of sink and source and the stability in the atmospheric boundary layer. Thus, $F_s_{-single}$ underestimated or overestimated $F_s$ (especially 21% underestimation in $F_s$ of $CO_2$ around sunrise and sunset (0430-0800 h and 1630-2000 h)). For $F_{CO_2}$, the errors in $F_s_{-single}$ generated 3% and 2% underestimation of $F_{CO_2}$ during nighttime (2030-0400 h) and around sunrise and sunset, respectively. In the process of nighttime correction and partitioning of $F_{CO_2}$, these differences would cause an underestimation in carbon balance at the rice paddy. In contrast, there were little differences at the errors in LE and H caused by the error in $F_s_{-single}$, irrespective of time.

A Study of Fluoride Adsorption in Aqueous Solution Using Iron Sludge based Adsorbent at Mine Drainage Treatment Facility (광산배수 정화시설 철 슬러지 기반 흡착제를 활용한 수용액상 불소 흡착에 관한 연구)

  • Lee, Joon Hak;Kim, Sun Joon
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.709-716
    • /
    • 2021
  • In this study, an adsorbent prepared by natural drying of iron hydroxide-based sludge collected from settling basin at a mine drainage treatment facility located in Gangneung, Gangwon-do was used to remove fluoride in an artificial fluoride solution and mine drainage, and the adsorption characteristics of the adsorbent were investigated. As a result of analyzing the chemical composition, mineralogical properties, and specific surface area of the adsorbent used in the experiment, iron oxide (Fe2O3) occupies 79.2 wt.% as the main constituent, and a peak related to calcite (CaCO3) in the crystal structure analysis was analyzed. It was also identified that an irregular surface and a specific surface area of 216.78 m2·g-1. In the indoor batch-type experiment, the effect of changes in reaction time, pH, initial fluoride concentration and temperature on the change in adsorption amount was analyzed. The adsorption of fluoride showed an adsorption amount of 3.85 mg·g-1 16 hours after the start of the reaction, and the increase rate of the adsorption amount gradually decreased. Also, as the pH increased, the amount of fluoride adsorption decreased, and in particular, the amount of fluoride adsorption decreased rapidly around pH 5.5, the point of zero charge at which the surface charge of the adsorbent changes. Meanwhile, the results of the isotherm adsorption experiment were applied to the Langmuir and Freundlich isotherm adsorption models to infer the fluoride adsorption mechanism of the used adsorbent. To understand the thermodynamic properties of the adsorbent using the Van't Hoff equation, thermodynamic constants 𝚫H° and 𝚫G° were calculated using the adsorption amount information obtained by increasing the temperature from 25℃ to 65℃ to determine the adsorption characteristics of the adsorbent. Finally, the adsorbent was applied to the mine drainage having a fluoride concentration of about 12.8 mg·L-1, and the fluoride removal rate was about 50%.

Studies on the Pasteurization Conditions of Takju (탁주의 저온 살균조건에 관한 연구)

  • Lee, Cherl-Ho;Tae, Won-Taek;Kim, Gie-Myung;Lee, Hyun-Duck
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.44-51
    • /
    • 1991
  • The thermal resistance of the important microorganisms in takju. Korean traditional turbid alcoholic beverage, was measured and optimun heating time and temperature to achieve the commercial pasteurization of these microorganisms were examined. Most of the vegetative bacterial cells in takju were destroyed by heating at over $60^{\circ}C$, except for the spore forming organisms, which did not actively grow in takju after pasteurization. The important microorganisms for the quality deterioration of pasteurized takju were then appeared to be yeast and molds, and their thermal resistances were measured. The thermal resistances of these microorganisms changed greatly depending upon the heating method. The D values of yeast in takju were 3.5 min at $65^{\circ}C$ and 0.46 min at $80^{\circ}C$ in cap-tube, and 7.1 sec at $65^{\circ}C$ and 2.3 sec at $80^{\circ}C$ in a continuous coil heat exchanger. Those of molds were 2.7 min at 65℃ and 0.25 min at $80^{\circ}C$ in cap-tube, and 3 sec at $65^{\circ}C$ and <1 sec at $80^{\circ}C$ in the coil heat exchanger. The acidity and pH did not change at $30^{\circ}C$ for two weeks after pasteurization by heating in the coil heat exchanger at $65^{\circ}C$ for 17 sec, but the viscosity increased slightly by the heat treatment. Significant differences in sensory quality, especially the formation of burnt smell and bitterness by heating takju for 12D of yeast at $70,\;80\;and\;85^{\circ}C$, respectively, were observed and this resulted in the significant reduction in overall likeness of pasteurized takju. However, when the heating temperature was fixed to $80^{\circ}C$, the overall likeness of pasteurized takju did not affected significantly by the heating time ranging from 8D to 12D of yeast. It was concluded that the optimum pasteurization condition of takju in a continuous heat exchanger was heating at $80^{circ}C$ for 23sec(10D of yeast).

  • PDF

Analysis of Fluidization in a Fluidized Bed External Heat Exchanger using Barracuda Simulation (바라쿠다 시뮬레이션을 이용한 유동층 외부 열교환기의 유동해석)

  • Lee, Jongmin;Kim, Dongwon;Park, Kyoungil;Lee, Gyuhwa
    • Korean Chemical Engineering Research
    • /
    • v.58 no.4
    • /
    • pp.642-650
    • /
    • 2020
  • In general, the circulation path of the fluidized particles in a CFB (Circulating Fluidized Bed) boiler is such that the particles entrained from a combustor are collected by a cyclone and recirculated to the combustor via a sealpot which is one of non-mechanical valves. However, when a fluidized bed heat exchanger (FBHE) is installed to additionally absorb heat from the fluidized particles, some particles in the sealpot pass through the FBHE and then flow into the combustor. At this time, in the FBHE operated in the bubbling fluidization regime, if the heat flow is not evenly distributed by poor mixing of the hot particles (800~950 ℃) flowing in from the sealpot, the heat exchanger tubes would be locally heated and then damaged, and the agglomeration of particles could also occur by formation of hot spot. This may affect the stable operation of the circulating fluidized bed. In this study, the unevenness of heat flow arising from structural problems of the FBHE of the domestic D-CFB boiler was found through the operating data analysis and the CPFD (Computational Particle Fluid Dynamics) simulation using Barracuda VR. Actually, the temperature of the heat exchanger tubes in the FBHE showed the closest correlation with the change in particle temperature of the sealpot. It was also found that the non-uniformity of the heat flow was caused by channeling of hot particles flowing in from the sealpot. However, it was difficult to eliminate the non-uniformity even though the fluidizing velocity of the FBHE was increased enough to fluidize hot particles vigorously. When the premixing zone for hot particles flowing in from the sealpot is installed and when the structure is changed through the symmetrization of the FBHE discharge line for particles reflowing into the combustor, the particle mixing and the uniformity of heat flow were found to be increased considerably. Therefore, it could be suggested that the structural modification of the FBHE, related to premixing and symmetric flow of hot particles, is an alternative to reduce the non-uniformity of the heat flow and to minimize the poor particle mixing.

Effects of Harvest Timing and Storage Conditions on Ear Quality of Waxy Corn (찰옥수수 수확시기 및 저장조건이 이삭 품질에 미치는 영향)

  • Oh, Se-Yun;Shim, Doo Bo;Song, Seon-Hwa;Park, Chan-Young;Shin, Jong-Moo;Shim, Sang In
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.61 no.4
    • /
    • pp.277-282
    • /
    • 2016
  • The consumption of waxy corn is steadily increasing in Korea. Waxy corn is harvested before it reaches full maturity and consumed immediately or follwing cold storage. Glutinous and sweet kernels are preferred due to their high palatability. The kernel properties can change rapidly following harvest, and, therefore, optimal conditions to maintain the kernel quality of corn should be identified. In addition, the timing of harvest of waxy corn ear should be also determined for optimal marketable corn production. From 10 days after silking (DAS) to25 DAS. fresh ear weight and single kernel weight rapidly increased from 78.3 g and 1.13 g, respectively, to 224.9 and 3.61 g, respectively. However, by 30 DAS both fresh and single kernel weight decreased by 10.6% and 6.1%, respectively. Kernel hardness significantly increased up to 25 DAS, and a further slight increase in kernel hardness was observed at 30 DAS. Total sugar content in kernel decreased from 12.5% at 10 DAS to 3.5% at 35 DAS, which was the result of the conversion of sugars to starch during ear development. Crude protein content in kernel did not vary significantly in comparison to kernel hardness. During storage of ear, kernel hardness increased from $726g\;cm^{-2}$ at harvest to $1894g\;cm^{-2}$ following 28 days of storage at a low temperature ($0^{\circ}C$). Kernel hardness increased 2.5 fold from 15 DAS to 30 DAS. Soluble protein level in kernel increased until 10 DAS, following which a slight decrease was observed. The soluble protein content decreased from 1.85% at 5 DAS to 1.45% at 35 DAS. Total sugar content in kernel decreased regardless of storage temperature; however, the rate of reduction was lower at $0^{\circ}C$ than that observed following storage at $4^{\circ}C$ and $10^{\circ}C$. The rate of reduction in kernel moisture content was also lower at $0^{\circ}C$ than that observed at $4^{\circ}C$ and $10^{\circ}C$.

A review of factors that regulate extracellular enzyme activity in wetland soils (습지 토양 내 체외효소 활성도를 조절하는 인자에 대한 고찰)

  • Kim, Haryun
    • Korean Journal of Microbiology
    • /
    • v.51 no.2
    • /
    • pp.97-107
    • /
    • 2015
  • Wetlands constitute a transitional zone between terrestrial and aquatic ecosystems and have unique characteristics such as frequent inundation, inflow of nutrients from terrestrial ecosystems, presence of plants adapted to grow in water, and soil that is occasionally oxygen deficient due to saturation. These characteristics and the presence of vegetation determine physical and chemical properties that affect decomposition rates of organic matter (OM). Decomposition of OM is associated with activities of various extracellular enzymes (EE) produced by bacteria and fungi. Extracellular enzymes convert macromolecules to simple compounds such as labile organic carbon (C), nitrogen (N), phosphorus (P), and sulfur (S) that can be easily taken up by microbes and plants. Therefore, the enzymatic approach is helpful to understand the decomposition rates of OM and nutrient cycling in wetland soils. This paper reviews the physical and biogeochemical factors that regulate extracellular enzyme activities (EEa) in wetland soils, including those of ${\beta}$-glucosidase, ${\beta}$-N-acetylglucosaminidase, phosphatase, arylsulfatase, and phenol oxidase that decompose organic matter and release C, N, P, and S nutrients for microbial and plant growths. Effects of pH, water table, and particle size of OM on EEa were not significantly different among sites, whereas the influence of temperature on EEa varied depending on microbial acclimation to extreme temperatures. Addition of C, N, or P affected EEa differently depending on the nutrient state, C:N ratio, limiting factors, and types of enzymes of wetland soils. Substrate quality influenced EEa more significantly than did other factors. Also, drainage of wetland and increased temperature due to global climate change can stimulate phenol oxidase activity, and anthropogenic N deposition can enhance the hydrolytic EEa; these effects increase OM decomposition rates and emissions of $CO_2$ and $CH_4$ from wetland systems. The researches on the relationship between microbial structures and EE functions, and environmental factors controlling EEa can be helpful to manipulate wetland ecosystems for treating pollutants and to monitor wetland ecosystem services.

Regional Analysis of Forest Eire Occurrence Factors in Kangwon Province (강원도 지역 산불발생인자의 지역별 유형화)

  • 이시영;한상열;안상현;오정수;조명희;김명수
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.3
    • /
    • pp.135-142
    • /
    • 2001
  • This study attempts to categorizes the factors of forest fire occurrences based on regional meteorologic data and general forest no characteristics of 18 cities and guns in Kangwon province. lo accomplish this goal, some statistical analyses such as analysis of variance, correspondence analysis and multidimensional scaling were adopted. To reveal the forest fires pattern of study region, a categorization process was conducted by employing the quantification approach which modified and quantified the metric-data of fire occurrence dates. Also, The fire occurrence similarity was compared by using multidimensional scaling for each study region. The major results are summarized as follows: It was found that the meteorological factors emerged as different to each region are average and maximum temperature, minimum dew point temperature and average and maximum wind speed. In the result of correspondence analysis representing relationships between fire causes and study regions, Kangrung is caused by arsonist, Chulwon, Hwachen and Yanggu caused by military factor, Sokcho and Chunchen caused by the debris burning, and Samchuk caused by general man-caused fires, respectively. Finally, the forest fire occurrence pattern of this study regions were divided into five areas such as, group I including Samchuk, Kangryung, Chunchen, Wonju, Hongchen and Hhoingsung, group II including Donghae, Taebaek, Yangyang and Pyongchang, group III including Jungsun, Chulwon and Whachen, group Ⅵ including Gosung, Injae and Yanggu, and group V including Shokcho and Youngwol.

  • PDF