• Title/Summary/Keyword: CH1

Search Result 3,426, Processing Time 0.039 seconds

Iridium(Ⅲ) Complexes of η$^6$-Arenes with Olefinic and Cyclopropyl Substituents: Facile Conversion to η ³-henylallyl Complexes

  • 정현목;주광석;진종식
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.4
    • /
    • pp.402-405
    • /
    • 1997
  • Olefinic and cyclopropyl group substituted arenes (C6H5Y) react with [Cp*Ir(CH3COCH3)3]A2 (A=ClO4-, OTf-) to give η6-arene complexes, [Cp*Ir(η6-C6H5Y)]2+ (1a: Y=-CH=CH2 (a),-CH=CHCH3 (b),-C(CH3)=CH2 (c),-CH-CH2-CH2 (d)). Complex 1b-1d are readily converted into η3-allyl complexes, [Cp*(CH3CN)Ir(η3-CH(C6H5)CHCH2)]+ (2a) and [Cp*(CH3CN)Ir(η3-CH2(C6H5)CH2)]+ (2b), in the presence of Na2CO3 in CH3CN. The η6-styrene complex, 1a reacts with NaBH4 to give η5-cyclohexadienyl complex, [Cp*Ir(η5-C6H6-CH=CH2)]+ (3), while with H2 it gives η6-ethylbenzene complex [Cp*Ir(η6-C6H5CH2CH3)]2+ (4). Complex 1a and 1c react with HCl to give [Cp*Ir(η6-C6H5CH2CH2Cl)]2+ (5a) and [Cp*Ir(η6-C6H5CH(CH3)CH2Cl]2+ (5b), respectively.

Synthesis and Characterization of Tetranuclear Molybdenum(Ⅵ) Complexes with Butylamidoxime Derivatives (부틸아미드옥심 유도체의 몰리브덴(Ⅵ) 사핵 착물의 합성과 성질)

  • Roh, Soo-Gyun;Oh, Sang Oh
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.7
    • /
    • pp.552-558
    • /
    • 1995
  • The tetranuclear complexes, $X_2[M_{O4}O_12{R'C(NH_2)NO}_2](X= n-Bu_4N^+$, $R'=(CH_3)_2CH$, $CH_3CH_2CH_2$, $CH_3SCH_2$; $X=(CH_3)_2CHC(=NH_2)NH_2^+$, $R'=(CH_3)_2CH$; $X = CH_3CH_2CH_2C(=NH_2)NH_2^+$, $R'=CH_3_CH_2CH_2$; $X=CH_3SCH_2C(=NH_2)NH_2^+$, $R'=CH_3SCH_2)$ have been synthesized by the reactions of monomeric and polynuclear complexes with isobutyl-, butyl- and thiomethylacetamidoxime. The prepared complexes were identified by elemental analysis, infrared, $^1H$ NMR and $^{13}C$ NMR spectroscopy. The structure of complex ${(CH_3)_2CHC(NH_2)_2}_2[M_{O4}O_{12}{(CH_3)_2CHC(NH_2)NO}_2]$ was determined by X-ray single crystal diffraction. Crystal data are follows: Monoclinic, $P2_{1/c}$, $a=10.168(3){\AA}$, $b=11.768(1){\AA}$, $c=13.557(1){\AA}$, ${\beta}=102.08(1)^{\circ}$, $V=1586.2(5){\AA}^3$, Z=2, final R=0.026 for 2951($F_0>3s(F_0)$). This complex is composed of a planar cyclic $[Mo_4({\mu}-O)_4]$ and two ${\mu}_4$-amidoximate.

  • PDF

1,4-Dicyanobutene Bridged Binuclear Iridium (I, III) Complexes and Their Catalytic Activities

  • Park, Hwa-Kun;Chin, Chong-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.3
    • /
    • pp.185-189
    • /
    • 1987
  • Reactions of $Ir(ClO)_4(CO)(PPh_3)_2$ with dicyano olefins, cis-NCCH = CH$CH_2$$CH_2$CN (cDC1B), trans-NCCH = CH$CH_2$$CH_2$CN (tDC1B), trans-NC$CH_2$CH = CH$CH_2$CN (tDC2B), and NC$CH_2$$CH_2$$CH_2$$CH_2$CN (DCB) produce binuclear dicationic iridium (I) complexes, $[(CO)(PPh_3)_2Ir-NC-A-CN-Ir(PPh_3)_2(CO)](ClO_4)_2$ (NC-A-CN = cDC1B (1a), tDC1B (1b), tDC2B (1c), DCB (1d)). Complexes 1a-1d react with hydrogen to give binuclear dicationic tetrahydrido iridium (Ⅲ ) complexes, $[(CO)(PPh_3)_2(H)_2Ir-NC-A-CN-Ir(H)_2(PPh_3)_2(CO)](ClO_4)_2$ (NC-A-CN = cDC1B (2a), tDC1B (2b), tDC2B (2c), DCB (2d)). Complexes 2a and 2b catalyze the hydrogenation of cDC1B and tDC1B, respectively to give DCB, while the complex 2c is catalytically active for the isomerization of tDC2B to give cDC1B and tDC1B and the hydrogenation of tDC2B to give DCB at $100^{\circ}C$.

Reactions, Hydrogenation and Isomerization of Unsaturated Esters with a Rhodium(I)-Perchlorato Complex

  • Jeong Hyun Mok;Chin Chong Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.6
    • /
    • pp.468-471
    • /
    • 1986
  • The isolated products from the reactions of $Rh(ClO_4)(CO)(PPh_3)_2$ (1) with CH_2$ = $CHCO_2C_2H_5$ (2) and trans-$CH_3CH$ = $CHCO_2C_2H_5$ (3) contain 80∼ 90% of $[Rh(CH_2 = CHCO_2C_2H_5)(CO)(PPh_3)_2]ClO_4$ (4) and [Rh(trans-$CH_3CH = CHCO_2C_2H_5(CO)(PPh_3)_2]ClO_4$ (5), respectively where 2 and 3 seem to be coordinated through the carbonyl oxygen. It has been found that complex 1 catalyzes the isomerization of $CH_2 = CH(CH_2)_8CO_2C_2H_5$ (6) to $CH_3(CH_2)_nCH = CH(CH_2)_{7-n}CO_2C_2H_5$ (n = 0∼7) under nitrogen at 25$^{\circ}C$. The isomerization of 6 is slower than that of $CH_2 = CH(CH_2)_9CH_3$ to $CH_3(CH_2)_nCH$ = $CH(CH_2)_{8-n}CH_3$ (n = 0∼8), which is understood in terms of the interactions between the carbonyl oxygen of 6 and the catalyst. It has been also observed that complex 1 catalyzes the hydrogenation of 2, 3, 6, trans-$C_6H_5CH = CHCO_2C_2H_5$ (7), $CH_3(CH_2)_7CH = CH(CH_2)_7CO_2C_2H_5$ (8) and $CH_2 = CH(CH_2)_9CH_3$ (9), and the isomerization (double bond migration) of 6 and 9 under hydrogen at 25$^{\circ}C$. The interactions between the carbonyl oxygen of the unsaturated esters and the catalyst affect the hydrogenation in such a way that the hydrogenation of the unsaturated esters becomes slower than that of simple olefins.

Synthesis of Long-Chain Unsaturated Acetates (장직쇄상(長直鎖狀) 불포화(不飽和) 초산화합물(醋酸化合物)의 합성(合成)에 관(關)한 연구(硏究))

  • Oh, Sung-Ki
    • Applied Biological Chemistry
    • /
    • v.19 no.1
    • /
    • pp.1-23
    • /
    • 1976
  • The female moths of Lepidoptera comprising over 1,000,000 described species possess long-chain unsaturated alcohols or esters as the typical structure of potential sex attractants. In this experiment, various stereoisomers of $C_{16}-unsaturated$ acetates were synthesized for potential sex attractants; e.g., $CH_3(CH_2)_mCH=CH(CH_2)_nOR$ (m=0-12, n=1-13, R=H and $-COCH_3$). Seventeen acetates were spectrometrically examined so that the data would provide a ready catalog of gas chromatography and mass spectrometric data for comparison with natural insect sex attractants. Exclusively cis and trans isomers were obtained by the catalytic and chemical reduction methods, respectively. Commercially available $CH_3(CH_2)_mBr,\;CH_3(CH_2)_mC{\equiv}CH,\;HC{\equiv}C(CH_2)_nOH\;and\;HO(CH_2)_n\;OH$ were used for the synthetic starting material. 1-Alkynes, $CH_3(CH_2)_m\;C{\equiv}CH$ exceeding nine methylene groups did not condense with alkyl dihalides. The yield of coupling products was gradually decreased with increasing the molecular weight of diols. In the coupling reaction of $BrCH_2CH_2$ OTHP with acetylene gas, the tetrahydropyranyl ether of bromohydrin produced undesirable elimination product. In this experiment, it seems that p-toluenesulfonic acid is greatly favoured hydrolyzing agent over dilute sulfuric acid in the hydrolysis of the tetrahydropyranyl ether of long-chain alkynols.

  • PDF

Synthesis and Catalytic Activity of Water-Soluble Iridium-Sulfonated Triphenylphosphine Com;lex. Hydration of Nitriles

  • 진종식;김상열;주광석;원경식;종대성
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.5
    • /
    • pp.535-538
    • /
    • 1999
  • Five coordinated water-soluble iridium(l) complex, IrH(CO)(TPPTS)3 (1) (TPPTS = P(m-C6H4SO3Na)3-xH2O) has been prepared from the reaction of IrCl3·3H2O with TPPTS and HCHO in H2O/EtOH solution. Complex 1 catalyzes the hydration of nitrites (RC ≡ N, R = CH3, CICH2, CH3(CH2)4, Ph) in aqueous solution to give the corresponding amides (RCONH2) at 100℃. The hydration of unsaturated nitrites (R'C ≡ N, R'=CH3CH=CH, CH3OCH=CH, trans-PhCH=CH, CH2=C(CH3)) takes place regioselectively on-C ≡ N group to give unsaturated amides (R'CONH2) leaving the olefinic group intact. The yields of the amides seem to be depending on the electrophilicity of the carbon of nitrile: The more the electron withdrawing ability of the substituents on nitrites, the more amides are obtained. The hydration of dinitriles (NC-R-CN, R=(CH2)4, (CH2)6) with complex 1 initially gives mono-hydration products (NC-R-CONH2) which are slowly hydrated further to give dihydration products (H2NCO-R-CONH2). The hydration of 1,4-dicyanobutane has been found to be somewhat faster than that of 1,6-dicyanohexane.

Catalytic Reactions of 3-Phenyl-2-propen-1-ol with Perchloratocarbonylbis (triphenylphosphine) rhodium (I)$^\dag$

  • Park, Jeong-Han;Chin, Chong-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.4
    • /
    • pp.324-328
    • /
    • 1987
  • Reaction of Rh $(ClO_4)(CO)(PPh_3)_2$ (1) with trans-$C_6H_5CH = CHCH_2OH$ (2) produces a new cationic rhodium(Ⅰ) complex, $[Rh(trans-C_6H_5CH = CHCHO)(CO)(PPh_3)_2]ClO_4$ (3) where 2 is coordinated through the oxygen atom but not through the olefinic group. At room temperature under nitrogen, complex 1 catalyzes dehydrogenation, hydrogenolysis, and isomerization of 2 to give $trans-C_6H_5CH$ = CHCHO (4), trans-$C_6H_5CH = CHCH_3$ (5) and $C_6H_5CH_2CH_2CHO$ (6), respectively, and oligomerization of 2 whereas under hydrogen, complex 1 catalyzes hydrogenation of 2 to give $C_6H_5CH_2CH_2CH_2OH$ (7) and hydrogenolysis of 2 to 5 which is further hydrogenated to $C_6H_5CH_2CH_2CH_3$ (8). The dehydrogenation and hydrogenolysis of 2 with 1 suggest an interaction between the rhodium and the oxygen atom of 2, whereas the isomerization and hydrogenation of 2 with 1 indicate an interaction between the rhodium and the olefinic system of 2.

$New η^3-Allyl-Alkenyl- and η^3-Allyl-Alkynyl-Ir-Cp^* Compounds from Reactions of [Cp^*Ir(η^3-CH_2CHCHPh)(NCMe)]^+ with Alkynes$

  • Jin, Jong Sik;Jong, Dae Seong;Kim, Mi Yeok;Lee, Hyeon Gwi
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.7
    • /
    • pp.739-742
    • /
    • 2001
  • Reactions of [Cp*Ir(η3-CH2CHCHPh)(NCMe)]OTf (1) with HC≡CR (R = H, CH2OH) in the presence of bases, B (B=NEt3, PPh3, AsPh3) produce stable Cp*Ir-η3-allyl-alkenyl compounds [Cp*Ir(η3-CH2CHCHPh)(-CH=CH-+B)]OTf (2) and [Cp*Ir(η3-CH2CHCHPh)(-C(CH2OH)=CH- +PPh3)]OTf (3), respectively in high yields. Cp*Ir-η3-allyl-alkynyl compounds Cp*Ir(η3-CH2CHCHPh(-C≡C-R') (4) and Cp*(η3-CH2CHCHPh)Ir-C≡C-p-C6H4-C≡C-Ir(η3-CH2CHCHPh)Cp* (5) have been prepared from reactions of 1 with HC≡CR'(R' = C6H5, p-C6H4CH3, C3H5, C6H9) and HC≡C-p-C6H4-C≡CH in the presence of NEt3.

Mechanistic Aspects in the Grignard Coupling Reaction of Bis(chloromethyl)dimethylsilane with Trimethylchlorosilane

  • 조연석;유복렬;안삼영;정일남
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.4
    • /
    • pp.422-426
    • /
    • 1999
  • The Grignard reactions of bis(chloromethyl)dimethylsilane (1) with trimethylchlorosilane (2) in THF give both the intermolecular C-Si coupling and intramolecular C-C coupling products. At beginning stage, 1 reacts with Mg to give the mono-Grignard reagent ClCH2Me2SiCH2MgCl (1) which undergoes the C-Si coupling reaction to give MC2Si(CH2SiMe3)2 3, or C-C coupling to a mixture of formula Me3SiCH2(SiMe2CH2CH2)nR1 (n = 1, 2, 3, ..; 4a, R1I = H: 4b, R1 = SiMe3). In the reaction, two reaction pathways are involved: a) Ⅰ reacts with 2 to give Me3SiCH2SiMe2CH2Cl 6 which further reacts with Mg to afford a Me2SiCH2Mel-SiCH2MgCl (Ⅱ) or b) I cyclizes intramolecularly to a silacyclopropane intermediate A, which undergoes a ring-opening polymerization by the nucleophilic attack of the intermediates I or Ⅱ, followed by the termination reaction with H2O and 2, to give 4a and 4b, respectively. As the mole ratio of 2/1 increased from 2 to 16 folds, the formation of product 3 increased from 16% to 47% while the formation of polymeric products 4 was reduced from 60% to 40%. The intermolecular C-Si coupling reaction of the pathway a becomes more favorable than the intramolecular C-C coupling reaction of the pathways b at the higher mole ratio of 2/1.

Seasonal Change of Rice-mediated Methane Emission from a Rice Paddy under Different Water Management and Organic Amendments (물 관리와 유기물 시용이 다른 논에서 벼 식물체를 통한 메탄 배출의 계절변화)

  • Shin, Yong-Kwang;Lee, Yang-Soo;Ahn, Jong-Woong;Koh, Mun-Hwan;Eom, Ki-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.1
    • /
    • pp.41-49
    • /
    • 2003
  • Methane emission was measured in a rice paddy under different water management and organic amendments. Methane emission from planted chambers and unplanted chambers was monitored to evaluate the rice-mediated methane emission. In flooding methane emission from planted chambers with NPK, NPK(+P), was $0.174g\;CH_4\;m^{-2}\;d^{-1}$ while that from unplanted chambers with NPK, NPK(-P), was $0.046g\;CH_4\;m^{-2}\;d^{-1}$ Methane emission from planted chambers with rice straw compost amendment, RSC(+P), was $0.214g\;CH_4\;m^{-2}\;d^{-1}$, while that from unplanted chambers with rice straw compost amendment, RSC(-P), was $0.076g\;CH_4\;m^{-2}\;d^{-1}$. Methane emission from planted chambers with rice straw amendment in Fehruary, RS2(+P), was $0.328g\;CH_4\;m^{-2}\;d^{-1}$, while that from unplanted chambers with rice straw amendment in February, RS2(-P), was $0.1g\;CH_4\;m^{-2}\;d^{-1}$. Methane emission from planted chambers with rice straw amendment in May, RS5(+P), was $0.414g\;CH_4\;m^{-2}\;d^{-1}$, while that from unplanted chamhers with rice straw amendment in May, RS5(-P), was $0.187g\;CH_4\;m^{-2}\;d^{-1}$. In intermittent irrigation methane emission from NPK(+P) was $0.115g\;CH_4\;m^{-2}\;d^{-1}$, while that from NPK(-P) was $0.041g\;CH_4\;m^{-2}\;d^{-1}$. Methane emission from RSC(+P) was $0.137g\;CH_4\;m^{-2}\;d^{-1}$, while that from RSC(-P) was $0.06g\;CH_4\;m^{-2}\;d^{-1}$. Methane emission from RS2(+P) was $0.204g\;CH_4\;m^{-2}\;d^{-1}$, while that from RS2(-P) was $0.09g\;CH_4\;m^{-2}\;d^{-1}$. Methane emission from RS5(+P) was $0.273g\;CH_4\;m^{-2}\;d^{-1}$, while that from RS5(-P) was $0.13g\;CH_4\;m^{-2}\;d^{-1}$. Methane transport via rice plant under flooding for NPK plot, RSC plot, RS2 plot and RS5 plot was 73.6%, 64.5%, 69.5% and 54.8%, respectively, and mean was 65.6%. Methane transport via rice plants under intermittent irrigation for NPK plot, RSC plot, RS2 plot and RS5 plot was 64.3%, 59.2%, 55.9% and 52.4%, respectively, and mean was 58.0%.