• Title/Summary/Keyword: CGMMV

Search Result 57, Processing Time 0.044 seconds

Simultaneous Detection of Three Tobamoviruses in Cucurbits by Rapid Immunofilter Paper Assay

  • Park, Gug-Seoun;Kim, Jae-Hyun;Chung, Bong-Nam;Kim, Hyun-Ran;Park, Yong-Mun
    • The Plant Pathology Journal
    • /
    • v.17 no.2
    • /
    • pp.106-109
    • /
    • 2001
  • A multi-rapid immunofilter paper assay (multi-RIPA) system was prepared for simultaneous diagnosis of three Tobamoviruses, Cucumber green mottle mosaic virus (CGMMV), Kyuri green mottle mosaic virus (KGMMV), and Zucchini green mottle mosaic virus (ZGMMV) in cucurbitaceous crops. Each of these viruses was specifically detected by the multi-RIPA from cucumber, watermelon, zucchini, and bottle gourd inoculated with the three Tobamoviruses singly or in combination. The three viruses could infect cucumber, watermelon, and bottle gourd ; however, CGMMV could not infect zucchini as the latex-coated CGMMV antibody showed a negative reaction in the multi-RIPA of the virus-infected plant extract. When the minimum detection level of multi-RIPA was compared with that of double antibody sandwich-enzyme-linked immunosorbent assay (DAS-ELISA) using CGMMV, the latter was 10 times more sensitive than the former. The detection limit of the multi-RIPA for the purified CGMMV was 50 ng/ml. In a survey of the threeviruses in cucurbits growing in commercial fields in 1999 and 2000, CGMMV was detected in watermelon and cucumber, and ZGMMV was detected only in zucchini growing in plastic houses at the suburbs of Chonju, Korea. However, KGMMV was not found in the commercially growing cucurbit crops in our study, The results suggest that the multi-RIPA can be a simple, rapid, specific and convenient tool to detect simultaneously the Tobamoviruses.

  • PDF

Soil Transmission of Cucumber green mottle mosaic virus and Its Control Mensures in Watermelon (수박에 오이녹반모자이크바이러스의 토양전염과 예방대책)

  • Choi, Gug-Seoun;Kim, Jae-Hyun;Kim, Jeong-Soo
    • Research in Plant Disease
    • /
    • v.10 no.1
    • /
    • pp.44-47
    • /
    • 2004
  • Soil transmission ratio of Cucumber green mottle mosaic virus (CGMMV) was 0.2 to 3.5 % in watermelon growing fields naturally infested with the virus. Biological activities of CGMMV lost after 17 months in moist well-aerated soil but still continued more than 33 months in waterlogged soil. To inhibit the virus infection through soil, the roots of watermelon seedlings were soaked in 10% solution of skim milk prior to transplanting. The seedlings treated with skim milk solution were not infected, while 5.0 to 7.6% out of control seedlings were infected. The roots treated with skim milk were coated with membrane around the roots under scanning electron microscope.

Virus Diseases Occurred on Watermelon in Jeonnam Province (전남지역의 수박에 발생하는 바이러스 병 발생 실태)

  • Ko, Sug-Ju;Lee, Yong-Hwan;Cha, Kwang-Hong;Park, Jin-Woo;Lee, Su-Heon;Yang, Kwang-Yeol
    • Research in Plant Disease
    • /
    • v.10 no.1
    • /
    • pp.39-43
    • /
    • 2004
  • Recent occurrence of virus diseases on watermelon plants cultivated in Jeonnam province was investigated from 1998 to 2002. While virus diseases were severely occurred on watermelon cultivated in green house in 1998, those of open field were severer than in green house since 2000. When 128 samples collected from different fields were examined by electron microscopy, 87.8% of the samples contained rod-shaped or filamentous virus particles. RT-PCR analysis of the samples revealed that Cucumber green mottle mosaic virus (CGMMV) was only detected from collected samples at May. Watermelon mosaic virus (WMV) was most frequently found and CGMMV and Zucchini yellow mosaic virus (ZYMV) were slightly at June and July. However Cucumber mosaic virus (CMV) and Papaya ringspot virus (PRSV) have not been detected.

Development of Non-destructive Measurement System for the Detection of CGMMV Virus in Watermelon Seed(citrullus lanatus L) using Hyperspectral Imaging system (초분광 영상 시스템을 이용한 수박종자(Capsicum annuum L)의 오이 녹반 모자이크 바이러스(CGMMV) 감염의 비파괴 판별 시스템 개발)

  • Bae, Hyung-Jin;lohumi, Santosh;Kandpal, Lalit Mohan;Park, ChanHwan;Lim, Hyoun-Sub;Cho, Byoung-Kwan
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.43-43
    • /
    • 2017
  • 종자산업은 농작물 생산에 중요한 역할을 끼치는 좌우하는 요소 중에 하나로, 우량종자의 확보는 농작물 수급에 중요한 역할을 하는 농업부문의 원천산업이다. 오이 녹반 모자이크 바이러스(CGMMV)는 박과류에 가장 많은 피해를 끼치는 바이러스로 종자전염을 방지하고, 우량종자의 공급을 위해서는 감염종자와 비 감염종자의 판별은 필수적이다. 이에 본 연구에서는 초분광 영상 시스템을 이용하여 수박종자의 CGMMV의 감염 및 비 감염종자를 판별할 수 있는 기술을 개발하고자 하였다. 본 연구에서 사용된 바이러스 감염 종자는 CGMMV 바이러스 감염 수박종자를 사용하였으며, 생산된 종자를 초분광 영상 시스템을 통해 스크린 후, RNA를 추출하여 PCR분석법으로 바이러스의 감염유무를 확인하였으며, 이후 바이러스의 감염유무와 획득된 스펙트럼을 비교 분석하여 판별모델을 개발하고 이를 선별 시스템에 적용하였다. 모델개발에 사용된 초분광 영상 기술은 초분광 SWIR(Shortwave infraed : 1000-2500nm)영상 기술이 다. 획득된 초분광 SWIR 영상을 분석한 결과 바이러스 감염 종자가 유의미한 정확도로 판별이 되는 것으로 나타났다. 초분광 SWIR 영상기술이 바이러스 감염종자와 비감염종자를 비파괴적으로 선별하는데 효과적으로 적용이 가능할 것으로 판단된다.

  • PDF

Establishment of an Agrobacterium-mediated Inoculation System for Cucumber Green Mottle Mosaic Virus

  • Kang, Minji;Seo, Jang-Kyun;Song, Dami;Choi, Hong-Soo;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.31 no.4
    • /
    • pp.433-437
    • /
    • 2015
  • The infectious full-length cDNA clones of Cucumber green mottle mosaic virus (CGMMV) isolates KW and KOM, which were isolated from watermelon and oriental melon, respectively, were constructed under the control of the cauliflower mosaic virus 35S promoter. We successfully inoculated Nicotiana benthamiana with the cloned CGMMV isolates KW and KOM by Agrobacterium-mediated infiltration. Virulence and symptomatic characteristics of the cloned CGMMV isolates KW and KOM were tested on several indicator plants. No obvious differences between two cloned isolates in disease development were observed on the tested indicator plants. We also determined full genome sequences of the cloned CGMMV isolates KW and KOM. Sequence comparison revealed that only four amino acids (at positions 228, 699, 1212, and 1238 of the replicase protein region) differ between the cloned isolates KW and KOM. A previous study reported that the isolate KOM could not infect Chenopodium amaranticolor, but the cloned KOM induced chlorotic spots on the inoculated leaves. When compared with the previously reported sequence of the original KOM isolate, the cloned KOM contained one amino acid mutation (Ala to Thr) at position 228 of the replicase protein, suggesting that this mutation might be responsible for induction of chlorotic spots on the inoculated leaves of C. amaranticolor.

Environmental Risk Assessment of Watermelon Grafted onto Transgenic Rootstock Resistant to Cucumber Green Mottle Mosaic Virus (CGMMV) on Non-Target Insects in Conventional Agro-Ecosystem

  • Yi, Hoon-Bok;Park, Ji-Eun;Kwon, Min-Chul;Park, Sang-Kyu;Kim, Chang-Gi;Jeong, Soon-Chun;Yoon, Won-Kee;Park, Sang-Mi;Han, Sang-Lyul;Harn, Chee-Hark;Kim, Hwan-Mook
    • Journal of Ecology and Environment
    • /
    • v.29 no.4
    • /
    • pp.323-330
    • /
    • 2006
  • We investigated the impact of watermelon grafted onto Cucumber Green Mottle Mosaic Virus (CGMMV)-resistant transgenic watermelon rootstock on insects as non-target organisms in a greenhouse in 2005. We quantitatively collected insect assemblages living on leaves and flowers, and we used sticky traps to collect alate insects. We compared the patterns of insect assemblages and community composition, cotton aphid (Aphis gossypii Glover) on watermelon leaves and western flower thrip (Frankliniella occidentalis Trybom) on watermelon male flowers, between CGMMV-resistant transgenic watermelon (TR) and non-transgenic watermelon (nTR). Non-parametric multidimensional scaling (NMS) ordination verified that insect assemblages on leaves and sticky traps were different between TR and nTR (P<0.05). The insect assemblages on male flowers were not statistically significant. Multi-response permutation procedures proofed our results from NMS results (P>0.05). Conclusively, TR watermelons appear to have some adverse effects on the population of cotton aphids on leaves and sticky traps, but watermelon male flowers do not show an adverse effect. Further research is required to assess the effect of TR on the aphid and western flower thrip. Life table experiments might support the specific reason for the adverse effects from leaf assemblages. Assessment of non-target impacts is an essential part of the risk assessment of non-target insects for the impact of transgenic organisms.

Immunocapture RT-PCR for Detection of Seed-borne Viruses on Cucurbitaceae Crops (Immunocapture RT-PCR을 이용한 박과작물 종자전염 바이러스의 검출)

  • Lee, Hyok-In;Kim, Jung-Hee;Yea, Mi-Chi
    • Research in Plant Disease
    • /
    • v.16 no.2
    • /
    • pp.121-124
    • /
    • 2010
  • Immunocapture reverse transcription polymerase chain reaction (IC-RT-PCR) was applied to the detection of Cucumber green mottle mosaic virus (CGMMV), Kyuri green mottle mosaic virus (KGMMV), and Zucchini green mottle mosaic virus (ZGMMV) on Cucurbitaceae crops. These seed-borne tobamoviruses were accurately detected from the infected leaves and seeds by IC-RT-PCR. This method was estimated to be about 100 times more sensitive than ELISA, and also it allowed the direct confirmation of ELISA results by using the captured antigens from a completed ELISA microwell. This convenient and reliable method could be used routinely for large-scale field surveys or seed tests of Cucurbitaceae crops.