• Title/Summary/Keyword: CFX Analysis

Search Result 306, Processing Time 0.029 seconds

Present State of CFD Softwares Application for Launch Vehicle Analysis (발사체 해석을 위한 CFD 소프트웨어 적용 현황)

  • Jeong, Hwanghui;Kim, Jae Yeol;Shin, Jae-Ryul
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.3
    • /
    • pp.71-80
    • /
    • 2020
  • Before we develop LVAFoam, a CFD software for launch vehicle analysis, we conducted a survey on other CFD softwares. We looked at in-house code and commercial CFD software of other countries that were used as a simulation of launch vehicle's combustor, turbopump and external flow. This research included in-house code solvers, developed by NASA, Mississippi State University, DLR, Bertin Technologies, CNES, CERFACS, and JAXA as well as commercial CFD software from FLUENT, CFX, Advance/FrontFlow/red, GASP, CRUNCH CFD, CFD-ACE+, FINETM/Turbo, STAR-CCM+. The simulation cases of launch vehicle analysis from each commercial softwares and introduction of the LVAFoam were presented.

Experimental Verification of Spur Gear Pump based on FEM Analysis (FEM해석 기반 스퍼기어 펌프의 실험적 검증에 대한 연구)

  • Lee, Chan-Woo;Kim, Sang-Yu;Lee, Seo-Han;Kim, Jae-Yeol;Lim, Jin-Hyuk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.6
    • /
    • pp.1-7
    • /
    • 2022
  • This work investigated the performance improvement of a medium-pressure fixed-displacement-type SPUR gear pump, which is mainly used in the machine tool industry. The 3D CFX analysis and IS technique were applied using ANSYS (commercial FEM code) and compared with experimental results to ensure the reliability of the analysis. In addition, the performance improvement of the pump was obtained using the theoretical volumetric displacement equation, and the gear tooth width was changed. The pressure flow performance curves were compared, and the results were analyzed according to the width of the gear teeth. This is a factor that can cause irregular flow, vibration, and noise inside the gear pump owing to friction between the housing and gear pump.

Analysis of Fluid Flows in a Stirred Tank Using Computational Fluid Dynamics (전산유체역학을 이용한 교반탱크 내 유체흐름 해석)

  • Kim, Mi Jin;Lee, Kyung Mi;Park, Kyun Young
    • Korean Chemical Engineering Research
    • /
    • v.48 no.3
    • /
    • pp.337-341
    • /
    • 2010
  • The flow patterns in a stirred tank, 1m in diameter and 1 m in height, were studied using CFX, a commercial computational fluid dynamics program, with the impeller rotation speed, the impeller blade angle and the tank-bottom shape varied and the baffles included or excluded. A vortex was observed in the center of the tank in the absence of the baffles, and the intensity of the vortex increased with increasing the rotation speed. The vortex was considerably reduced in the presence of the baffles. An increase in the blade angle increased the vertical flow and decreased the vortex intensity. The flow in the corners of the tank bottom turned smoother as the tank bottom was varied in shape from flat to round.

Performance analysis of Savonius Rotor for Wave Energy Conversion using CFD

  • Zullah, Mohammed Aisd;Choi, Young-Do;Kim, Kyu-Han;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.600-605
    • /
    • 2009
  • A general purpose viscous flow solver Ansys CFX is used to study a Savonius type wave energy converter in a 3D numerical viscous wave tank. This paper presents the results of a computational fluid dynamics (CFD) analysis of the effect of blade configuration on the performance of 3 bladed Savonius rotors for wave energy extraction. A piston-type wave generator was incorporated in the computational domain to generate the desired incident waves. A complete OWC system with a 3-bladed Savonius rotor was modeled in a three dimensional numerical wave tank and the hydrodynamic conversion efficiency was estimated. The flow over the rotors is assumed to be two-dimensional (2D), viscous, turbulent and unsteady. The CFX code is used with a solver of the coupled conservation equations of mass, momentum and energy, with an implicit time scheme and with the adoption of the hexahedral mesh and the moving mesh techniques in areas of moving surfaces. Turbulence is modeled with the k.e model. Simulations were carried out simultaneously for the rotor angle and the helical twist. The results indicate that the developed models are suitable to analyze the water flows both in the chamber and in the turbine. For the turbine, the numerical results of torque were compared for all the cases.

  • PDF

Study on Configuration Design of Inlet and Exhaust Ducts of a Turboprop Engine for the Altitude Test Considering performance losses (성능손실을 고려한 고고도시험용 터보프롭 엔진 흡입구 및 배기구 형상설계에 관한 연구)

  • Kong, C.;Kim, K.;Lim, S.;Yoo, J.;Choi, K.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.144-152
    • /
    • 2011
  • In order to investigate the operation performance behaviors of the UAV's propulsion system to be operated long time in high altitude, the engine performance tests, which are simulated in the altitude engine test facility should be needed. If the test is performed in a existing altitude engine test facility, additional test apparatuses are required. Among them a proper design of the inlet and exhaust ducts that may directly affect the engine performance is very important. If the design is not adequate, the engine performance loss due to the flow behavior change and the pressure loss may be not similar to the real engine performance. In this work, firstly the engine inlet and exhaust ducts to be mounted to the existing altitude facility are modelled in 3D and its flow behaviors and pressure losses are analyzed using a commercial CFD tool, ANSYS's CFX, and the engine performance with the duct losses is calculated using the performance analysis program developed by C. Kong et al. Finally, the optimized inlet and exhaust ducts' configurations are proposed through the repeated analyses of various duct configurations.

  • PDF

Deriving Reference Data for Alarm System in a Container Crane by Fluid-Structure Interaction Analysis (유동구조연성해석을 통한 컨테이너 크레인의 경보시스템용 기준 데이터 도출)

  • Han, Dong-Seop;Han, Geun-Jo;Kwak, Ki-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.8
    • /
    • pp.1091-1096
    • /
    • 2010
  • This study was conducted to provide reference data for designing an alarm system that can help prevent the overturning of a container crane under wind load. Two methods, namely, fluid-structure interaction (FSI) analysis and windtunnel test, were adopted in this investigation. To evaluate the effect of wind load on the stability of the crane, a 50-ton-class container crane that is widely used in container terminals was adopted as the analysis model and 19 values were considered as design parameters for wind direction. First, the wind-tunnel test for the reduced-scale container crane model was performed according to the wind direction by using an Eiffel type atmospheric boundary-layer wind tunnel. Next, the FSI analysis for the real-scale container crane was conducted using ANSYS and CFX. Then, the uplift force determined from the FSI analysis was compared with that determined from the wind-tunnel test. Finally, a formula to compensate for the difference between the results of the FSI analysis and the wind-tunnel test was proposed.

Study on the Leakage Flow and the Flow Analysis of Regenerative Pump (재생펌프의 누설 유동 및 내부 유동에 관한 연구)

  • Shim Chang-Yeul;Kang Shin-Hyoung
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.593-596
    • /
    • 2002
  • Flows in a regenerative pump were calculated for several flow-rates, using the CFX-Tascflow. The calculated results show the vortex structure in the impeller and side channel. The predicted performance shows considerable discrepancy form the measured values for low flow rates. Main source of the difference is the leakage flow of pump strongly affecting the performance of pump. A simple correlation was proposed using calculated leakage flows through the parametric calculations of the simplified passage.

  • PDF

Numerical Analysis of Internal Flow Distribution in Scale-Down APR+ (축소 APR+ 원자로 모형에서의 내부유동분포 수치해석)

  • Lee, Gong Hee;Bang, Young Seok;Woo, Sweng Woong;Kim, Do Hyeong;Kang, Min Gu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.9
    • /
    • pp.855-862
    • /
    • 2013
  • A series of 1/5 scale-down reactor flow distribution tests had been conducted to determine the hydraulic characteristics of an APR+ (Advanced Power Reactor Plus), which were used as the input data for an open core thermal margin analysis code. In this study, to examine the applicability of computational fluid dynamics with the porous model to the analysis of APR+ internal flow, simulations were conducted using the commercial multi-purpose computational fluid dynamics software ANSYS CFX V.14. It was concluded that the porous domain approach for some reactor internal structures could adequately predict the flow characteristics inside a reactor in a qualitative manner. If sufficient computational resources are available, the predicted core inlet flow distribution is expected to be more accurate by considering the real geometry of the internal structures, especially upstream of the core inlet.