• Title/Summary/Keyword: CFU(colony-forming units)

Search Result 149, Processing Time 0.023 seconds

Inhibition of Listeria monocytogenes in Vacuum or Modified Atmosphere-Packed Ground Beef by Lactococcal Bacteriocins

  • Park, Hye-Jung;Lee, Na-Kyoung;Kim, Kee-Tae;Ha, Jung-Uk;Lee, Dong-Sun;Paik, Hyun-Dong
    • Preventive Nutrition and Food Science
    • /
    • v.8 no.2
    • /
    • pp.196-199
    • /
    • 2003
  • We investigated the antagonistic effects of two lactococcal bacteriocins, nisin or lacticin NK24, on the growth and the survival of Listeria monocytogenes in vacuum or modified atmosphere-packaged ground beef, Ground beef was inoculated with approximately 3 log colony-forming units (CFU) of L. monocytogenes ATCC 15313 culture per gram of ground beef. Inoculated samples were blended with/without 100 AU/g nisin or lacticin NK24, and subsequently vacuum or modified atmosphere packed at 4$^{\circ}C$. Listeria in the bacteriocin-treated and control samples was subsequently isolated from both vacuum and modified atmosphere packs and enumerated as CFU on Listeria Isolation Agar medium. Microbial counts in ground beef treated with bacteriocin declined steadily, while those of non-treated beef samples increased steadily. The results obtained demonstrate that nisin inhibits the growth of L. monocytogenes more effectively than lacticin NK24 at 100 AU/g. The use of lactococcal bacteriocins, such as nisin or lacticin NK24, in vacuum or modified atmosphere packaging offers a promising approach for eliminating or reducing the risk of L monocytogenes contamination in ground beef.

Specific Detection of Erwinia carotovora subsp. carotovora by DNA Probe Selected from PCR Polymorphic Bands (PCR다형성 밴드 유래 DNA probe에 의한 Erwinia carotovora subsp. carotovora 특이적 검출)

  • Kang, Hee-Wan;Go, Seung-Joo;Kwon, Soon-Wo
    • Korean Journal Plant Pathology
    • /
    • v.14 no.2
    • /
    • pp.164-170
    • /
    • 1998
  • This study was carried out to develop DNA probe for specific detection of Erwinia carotovora subsp. carotovora. Universal rice primer (URP, 20 mer) developed from repetitive sequence of rice was applied for producing PCR DNA fingerprints of Erwinis spp. In E. carotovora subsp. carotovora strains, primer URP2F amplyfied polymorphic bands which are distinguisable from other Erwinia spp. A PCR band of 0.6 kb selected from PCr polymorphic bands of E. carotovora subsp. carotovora strains was cloned and evaluated as a diagnostic DNA probe. Among 28 bacterial strains including 22 Erwinia spp, the probe (pECC2F) only hybridized to total DNAs from e. carotovora subsp. carotovora strains and E. carotovora subsp. wasabiae, but sizes of hybridized bands were different between these subspecies, 10.0 kb and 3.5 kb respectively. In dot blot assays using probe pECC2F, as few as 103 colony forming units (CFU) of E. carotovora subsp. carotovora could be detected in a suspension containing about 1$\times$103 CFU of soil bacteria.

  • PDF

Rapid Enumeration of Listeria monocytogenes in Pork Meat Using Competitive PCR

  • Lim, Hyung-Kun;Hong, Chong-Hae;Choi, Weon-Sang
    • Food Science and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.387-391
    • /
    • 2005
  • Competitive polymerase chain reaction (cPCR) was used to develop a direct enumeration method of Listeria monocytogenes in pork meat. Pork meat was artificially inoculated with L. monocytogenes and DNA was extracted using guanidine thiocyanate-phenol-chloroform and subjected to PCR amplification. Sixteen primer sets for L. monocytogenes hlyA gene were tested for sensitive detection and the DG69/DG74 primer set was selected. The detection limit achieved with this primer set was as low as 860 colony-forming units (cfu) per 0.1 g of pork meat. When the samples were cultured at $30^{\circ}C$ for 16 hr in Brain Heart Infusion (BHI) medium, even a single bacterium could be detected with this primer set by PCR. For cPCR, the hlyA gene, which features a 148 bp-deletion, was cloned in the pGEM-4Z vector. A known amount of competitor DNA which has the same primer binding sites was co-amplified with L. monocytogenes total DNA from the artificially inoculated pork meat. The cell-number determined by cPCR was approximately equal to cfu from the Most Probable Number (MPN) method. The whole procedure took only 5 hr.

Evaluation of the physical properties and antibacterial effects on Candida albicans of denture base resin containing silver sulfadiazine (실버 설파다이아진이 첨가된 의치상용 레진의 Candida albicans에 대한 항균평가 및 물성 평가)

  • Yu-Ri Choi;Min-Kyung Kang
    • Journal of Korean society of Dental Hygiene
    • /
    • v.23 no.6
    • /
    • pp.459-466
    • /
    • 2023
  • Objectives: The purpose of this study was to evaluate the physical properties and antibacterial activity of denture base resin with added silver sulfadiazine. Methods: Specimens were made from self-curing denture base resin and silver sulfadiazine as an inorganic antibacterial agent. For physical evaluation of the specimens, surface roughness, surface hardness, and contact angle were measured. Bacterial growth was assessed by optical densityat 600 nm (OD600) and colony forming units (CFU) measurements to confirm antibacterial activity. Results: There was no significant difference in surface roughness, surface hardness, and contact angle in the experimental group containing silver sulfadiazine compared to the control group. In contrast, the experimental group showed a significant decrease in antibacterial activity compared to the control group in terms of OD value. Analysis of CFU confirmed a significant decrease in colonies in the experimental group compared to the control group. Conclusions: Denture base resin containing silver sulfadiazine, an inorganic antibacterial agent, exhibited enhanced antibacterial activity without physical changes. In conclusion, the use of denture base resin containing inorganic antibacterial agents may be expected in the future.

Activity and Survival of the Natural Bacteria under the Stressed Conditions Detected by Bioluminescent Phenotype (스트레스 하의 자연세균의 활성 및 생존의 발광표현형을 이용한 탐지)

  • Park, Kyoung-Je;Yoon, Hye-Young;Chun, Se-Jin;Lee, Ho-Sa;Lee, Dong-Hun;Jahng, Deokjin;Lee, Kyu-Ho
    • Korean Journal of Microbiology
    • /
    • v.34 no.3
    • /
    • pp.154-161
    • /
    • 1998
  • To investigate whether the introduced genetic marker is useful to detect the survivalship and activity of the natural bacteria under the stressed conditions, one Gram-negative isolate, KP964 was transformed to the luminous phenotype by transferring luxAB gene. Under the starvation-stress this luminous bacterial culturability (determined by colony-forming-units [CFU] on agar plate) decreased rapidly below the detection limit by 37 days, while its total cell number (determined by AODC) remained almost the same as its initial inocular size. At that time period, the viable cell number was estimated to be 1400 times higher than its CFU number. The bioiuminescence (determined by relative light units [RLU]) produced under the same condition was also monitored and found to decrease more rapidly than the culturability by 5-fold. Under the other stresses, e.g., osmotic shocks, acid shock, and exposure to toxic chemicals, this bacterial strain did not show the reliable correlation between CFU and RLU. These results might not suggest the direct estimation of bioiuminescence from the stressed bacteria be an index of both the survivalship and its activity. However, when the stressed bacterial cells were incubated under the favorable condition by relieving from the existing stress, the potential bioiuminescence (the lag periods before the increase of bioiuminescence, the increase rates of bioiuminescence, and the maximal levels of bioiuminescence) was shown to be highly dependent upon the strengths of the stresses exposed to the bacterial cells. Therefore, analysis of the potential bioiuminescence from the stressed bacteria revealed good relationships with survival as well as activity.

  • PDF

Outbreak of Bioaerosols with Continuous Use of Humidifier in Apartment Room

  • Lee, Ji-Hyun;Ahn, Kang-Ho;Yu, Il-Je
    • Toxicological Research
    • /
    • v.28 no.2
    • /
    • pp.103-106
    • /
    • 2012
  • The effect of continuous humidifier use on the bioaerosol concentration in an indoor environment was investigated. An ultrasonic humidifier was operated for 10 hr per day for 15 days in an apartment room. During this time period, viable bioaerosol samples were taken using a single-stage Andersen sampler containing culture media plates for bacteria and fungi. The culture plates were then incubated at room temperature for 2~7 days depending on the media. The counts for the air sample plates were corrected for multiple impactions using the positive hole conversion method and are reported as the colony forming units per cubic meter of air (CFU/$m^3$). While the bacterial concentration measured using the tryptic soy agar (TSA) did not show any significant change during the first 3 days, the concentration increased from the $6^{th}$ day (6979 CFU/$m^3$) and reached a maximum on the $9^{th}$ day (46431 CFU/$m^3$). The concentration then decreased to 2470 CFU/$m^3$ on the $12^{th}$ day, at which point the fungal concentration increased rapidly to 14424~16038 CFU/$m^3$. Also, while the fungal concentration showed a significant change until the $9^{th}$ day of humidifier use, fungal growth was observed on the wallpaper and increased rapidly from the $12^{th}$ day. However, the bacterial concentration increased rapidly after the fungi were removed by remediation. The major fungal species identified in the samples were Penicillium representing 34%, Aspergillus representing 31%, Cladosporium representing 24%, and Alternaria representing 1%. The results also indicated that a relative humidity over 80% was easily achieved with continuous humidifier use. Yet, maintaining a high humidity in a room can cause a rapid outbreak of microbial growth.

Assessment of indoor air micro-flora in selected schools

  • Katiyar, Vinita
    • Advances in environmental research
    • /
    • v.2 no.1
    • /
    • pp.61-80
    • /
    • 2013
  • Quantification of viable forms of microbial community (bacteria and fungi) using culture-dependent methods was done in order to characterize the indoor air quality (IAQ). Role of those factors, which may influence the concentration of viable counts of bacteria and fungi, like ventilation, occupancy, outdoor concentration and environmental parameters (temperature and relative humidity) were also determined. Volumetric-infiltration sampling technique was employed to collect air samples both inside and outside the schools. As regard of measurements of airborne viable culturable microflora of schools during one academic year, the level of TVMCs in school buildings was ranged between 803-5368 cfu/$m^3$. Viable counts of bacteria (VBCs) were constituted 63.7% of the mean total viable microbial counts where as viable counts of fungi (VFCs) formed 36.3% of the total. Mean a total viable microbial count (TVMCs) in three schools was 2491 cfu/$m^3$. Outdoor level of TVMCs was varied from 736-5855 cfu/$m^3$. Maximum and minimum VBCs were 3678-286 cfu/m3 respectively. Culturable fungal counts were ranged from 268-2089 cfu/$m^3$ in three schools. Significant positive correlation (p < 0.01) was indicated that indoor concentration of viable community reliant upon outdoor concentration. Temperature seemed to have a large effect (p < 0.05, p < 0.01) on the concentration of viable culturable microbial community rather than relative humidity. Consistent with the analysis and findings, the concentration of viable cultural counts of bacteria and fungi found indoors, were of several orders of magnitude, depending upon the potential of local, spatial and temporal factors, IO ratio appeared as a crucial indicator to identify the source of microbial contaminants.

Antagonistic Bacillus species as a biological control of ginseng root rot caused by Fusarium cf. incarnatum

  • Song, Minjae;Yun, Hye Young;Kim, Young Ho
    • Journal of Ginseng Research
    • /
    • v.38 no.2
    • /
    • pp.136-145
    • /
    • 2014
  • Background: This study aimed to develop a biocontrol system for ginseng root rot caused by Fusarium cf. incarnatum. Methods: In total, 392 bacteria isolated from ginseng roots and various soils were screened for their antifungal activity against the fungal pathogen, and a bacterial isolate (B2-5) was selected as a promising candidate for the biocontrol because of the strong antagonistic activity of the bacterial cell suspension and culture filtrate against pathogen. Results: The bacterial isolate B2-5 displayed an enhanced inhibitory activity against the pathogen mycelial growth with a temperature increase to $25^{\circ}C$, produced no pectinase (related to root rotting) an no critical rot symptoms at low [$10^6$ colony-forming units (CFU)/mL] and high ($10^8CFU/mL$) inoculum concentrations. In pot experiments, pretreatment with the bacterial isolate in the presumed optimal time for disease control reduced disease severity significantly with a higher control efficacy at an inoculum concentration of $10^6CFU/mL$ than at $10^8CFU/mL$. The establishment and colonization ability of the bacterial isolates on the ginseng rhizosphere appeared to be higher when both the bacterial isolate and the pathogen were coinoculated than when the bacterial isolate was inoculated alone, suggesting its target-oriented biocontrol activity against the pathogen. Scanning electron microscopy showed that the pathogen hyphae were twisted and shriveled by the bacterial treatment, which may be a symptom of direct damage by antifungal substances. Conclusion: All of these results suggest that the bacterial isolate has good potential as a microbial agent for the biocontrol of the ginseng root rot caused by F. cf. incarnatum.

Characteristics of sawdust cultivation of Lentinula edodes with different methods of spawn inoculation

  • Chang, Hyun You;Seo, Geum Hui;Lee, Yong Kuk;Jeon, Sung Woo
    • Journal of Mushroom
    • /
    • v.16 no.2
    • /
    • pp.61-64
    • /
    • 2018
  • This study was carried out to investigate the management characteristics and growth performance of L. edodes from the cooling stage to incubation. Bags of different heights and weights are available for bagging. When the medium size of $17{\times}13cm$ was used and the size of the inoculation hole was changed from 1/3 to 2/3, the browning period was shortened to 30 days. Mycelial growth was evaluated according to the cooling temperature after sterilization. It was observed to be the highest at 122 mm/15 days at $10^{\circ}C$ and 114 mm/15 days and 117 mm/15 days at $15^{\circ}C$ and $20^{\circ}C$, respectively. The contamination rate of the sawdust media before inoculation was measured as 0, $4.5{\times}10$, $1.3{\times}10^2$, $4.0{\times}10^3cfu$ at $5^{\circ}C$, $10^{\circ}C$, $15^{\circ}C$, and $24^{\circ}C$ respectively. The average of $1.6{\times}10^8$ colony forming units (cfu) of microorganisms was observed in the sawdust that had been piled for six months outdoors. In summer, the sawdust has to be used immediately after mixing. The sterilized medium had an average of $4{\times}10^3cfu$ of microorganisms at $24^{\circ}C$ and $1.3{\times}10^2cfu$ at $15^{\circ}C$. After 15 days of inoculation in vitro, the growth conditions of the sawdust was the best at 132 mm, followed by grain and liquid. When inoculated with liquid spawn, the moisture content of the substrate should be adjusted between 50% and 55% in advance.

Airborne Fungi Concentrations and Related Factors in the Home (가정 내 부유 진균의 농도와 관련 요인)

  • Cho, YongMin;Ryu, SeungHun;Choi, Min Seok;Seo, SungChul;Choung, Ji Tae;Choi, Jae Wook
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.5
    • /
    • pp.438-446
    • /
    • 2013
  • Objectives: This study was performed in order to determine airborne fungi levels in homes and find related factors that may affect airborne fungi concentration. Methods: Fifty homes were study subjects for measuring airborne fungi. For sampling airborne fungi, the impaction method on agar plates was used and samples were counted as colony forming units per cubic meter of air ($CFU/m^3$). In addition, information regarding housing characteristics and atopic disease in each home were collected via questionnaire. Results: The geometric means (GM) of airborne fungi concentrations in fifty living rooms and bedrooms were 68.03 and 62.93 $CFU/m^3$, respectively. The GM of airborne fungi concentration in atopy homes was 78.42 $CFU/m^3$. This was higher than non-atopy homes' 54.34 $CFU/m^3$ (p-value=0.051). In the results of the multiple regression analysis, outdoor airborne fungal concentration proved a strong effective factor on indoor airborne fungal concentration. Also, construction year, floor area of house, indoor smoking and frequency of ventilation were factors that showed a significant association with indoor airborne fungi concentration. Conclusions: The results of this study show that some housing and living characteristics may affect the development and increase of airborne fungi. In addition, exposure to airborne fungi may be a risk factor for the prevalence of childhood atopic diseases.