• Title/Summary/Keyword: CFT Columns

Search Result 175, Processing Time 0.026 seconds

Structural Characteristics of Beam-to-Column Connection of Circular CFT Columns by Using Mixed Diaphragms (혼합다이아프램 형식을 적용한 콘크리트충전 원형강관 기둥-보 접합부의 구조적 특성)

  • Wang, Ning;Lee, Myung Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.3
    • /
    • pp.299-310
    • /
    • 2015
  • CFT(Concrete-Filled Tube) structures have problems at processing cause closed section and concrete filling problems. In this study, a CFT structure that uses different types of diaphragms in its upper and lower connections to improve the concrete filling was tested and analyzed via the FEM program. Implementation of variable analysis of EP-T type to find out the reason that effect on the resistance force of the connection. As a result, through experiments and analysis investigated the structural characteristics of circular CFT beam-to-column connection.

Behavior of Hybrid Double Skin Concrete Filled Circular Steel Tube Columns

  • Kim, Jin-Kook;Kwak, Hyo-Gyoung;Kwak, Ji-Hyun
    • Steel and Composite Structures
    • /
    • v.14 no.2
    • /
    • pp.191-204
    • /
    • 2013
  • A hybrid double skin concrete filled (HDSCF) circular steel tube column is proposed in this study. The yield strength of the outer steel tube is larger than 690MPa and the inner tube has less strength. In order to achieve efficiency with the high strength outer tube, a feasibility study on reducing the thickness of the tube below the specified design codes for CFTs was conducted based on an experimental approach. The experiment also took variables such as thickness of the inner tube, hollow ratio, and strength of concrete into consideration to investigate the behavior of the HDSCF column. In order to estimate the applicability of design equations for CFTs to the HDSCF column, test results from CFT and HDSCF columns with design codes were compared. It was found that the axial compressive performance of the proposed HDSCF column is equivalent to that of the conventional CFT member irrespective of design variables. Furthermore, the design equation for a circular CFT given by EC4 is applicable to estimate the ultimate strength of the HDSCF circular steel tube column.

A study on nonlinear analysis and confinement effect of reinforced concrete filled steel tubular column

  • Xiamuxi, Alifujiang;Hasegawa, Akira;Yu, Jiang
    • Structural Engineering and Mechanics
    • /
    • v.56 no.5
    • /
    • pp.727-743
    • /
    • 2015
  • According to former studies, the mechanical properties of reinforced concrete filled tubular steel (RCFT) columns differed greatly from that of concrete filled steel tubular (CFT) columns because of interaction of inserted reinforcement in RCFT. Employing an experiment-based verification policy, a general FE nonlinear analysis model was developed to analyze the mechanical behavior and failure mechanism of RCFT columns under uniaxial compression. The reasonable stress-strain relationships were suggested for confined concrete, reinforcements and steel tube in the model. The mechanism for shear failure of concrete core was found out in the numerical simulation, and a none-conventional method and equation for evaluating the confinement effect of RCFT were proposed.

Behavior of gusset plate-T0-CCFT connections with different configurations

  • Hassan, M.M.;Ramadan, H.M.;Naeem, M.;Mourad, S.A.
    • Steel and Composite Structures
    • /
    • v.17 no.5
    • /
    • pp.735-751
    • /
    • 2014
  • Concrete-filled steel tube (CFT) composite columns, either circular (CCFT) or rectangular (RCFT), have many economical and aesthetic advantages but the behavior of their connections are complicated. This study aims to investigate, through an experimental program, the performance and behavior of different connections configurations between circular concrete filled steel tube columns (CCFT) and gusset plates subjected to shear and axial compression loadings. The study included seventeen connection subassemblies consisting of a fixed length steel tube and gusset plate connected to the tube end with different details tested under half cyclic loading. A notable effect was observed on the behavior of the connections due to its detailing changes with respect to capacity, failure mode, ductility, and stress distribution.

Axial Load Performance of Circular CFT Columns with Concrete Encasement (콘크리트피복 원형충전강관 기둥의 압축성능)

  • Lee, Ho Jun;Park, Hong Gun;Choi, In Rak
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.6
    • /
    • pp.525-536
    • /
    • 2015
  • An experimental study was performed to investigate the axial-flexural load-carrying capacity of concrete-encased and-filled steel tube (CEFT) columns. To restrain local buckling of longitudinal bars and to prevent premature failure of the thin concrete encasement, the use of U-cross ties was proposed. Five eccentrically loaded columns were tested by monotonic compression. The test parameters were axial-load eccentricity, spacing of ties, and the use of concrete encasement. Although early cracking occurred in the thin concrete encasement, the maximum axial loads of the CEFT specimens generally agreed with the strengths predicted considering the full contribution of the concrete encasement. Further, due to the effect of the circular steel tube, the CEFT columns exhibited significant ductility. The applicability of current design codes to the CEFT columns was evaluated in terms of axial-flexural strength and flexural stiffness.

Evaluation of the Fire Resistance Performance of Interior Anchor Type CFT Columns through Loaded Heating Test

  • Kim, Sunhee;Yom, Kyongsoo;Choi, Sungmo
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.1
    • /
    • pp.39-48
    • /
    • 2013
  • The fire resistance performance of generic CFT columns has been verified through various tests and analyses and the columns are widely used for fire resistance designs abroad. In this study, 3 groups of specimens (Non-fire protection, reinforcement with steel fiber and fire resistance paint) are suggested in order to evaluate the fire resistance performance of interior anchor type concrete-filled steel tubular columns having efficient cross-sections through loaded heating tests. Axial deformation-time relationship and in-plane temperatures are compared to evaluate the fire resistance performance of the specimens associated with variables. Suggested from the fact that the interior anchors exposed to fire exert influence on fire resistance performance due to thermal expansion, the reinforcements using steel fiber and fire resistance paint are verified to mitigate contraction and improve fire resistance performance. The result obtained from the tests of interior anchor type concrete-filled tubular columns is expected to be used for effective fire resistance design in association with previously conducted studies.

Development of Non-linear Finite Element Modeling Technique for Circular Concrete-filled Tube (CFT) (원형 콘크리트 충전 강관 (CFT)의 비선형 유한 요소 해석 기법 개발)

  • Moon, Jiho;Ko, Heejung;Lee, Hak-Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3A
    • /
    • pp.139-148
    • /
    • 2012
  • Circular concrete-filled tubes (CFTs) are composite members, which consists of a steel tube and concrete infill. CFTs have been used as building columns and bridge piers due to several advantages such as their strength-to-size efficiency and facilitation of rapid construction. Extensive experimental studies about CFT have been conducted for past decades. However experimental results alone are not sufficient to support the engineering of these components. Complementary advanced numerical models are needed to simulate the behavior of CFT to extend the experimental research and develop predictive tools required for design and evaluation of structural systems. In this study, a finite element modeling technique for CFT was developed. The confinement effects, and behavior of CFT subjected various types of loading predicted by the proposed finite element model for CFT were verified by comparing with test results.

4th Industrial Revolution Construction and Machinery Covergence Technology base Rotational Modular Housing of CFT Central Axis Structure (4차산업혁명 건설 및 기계 융합기술기반 CFT 중심축 구조체의 회전형 모듈러주택)

  • Kim, Dae-Geon;Woo, Jong-Yeol;Woo, A-Jin;Jeon, ho gyeong;Hong, young ju;Lee, Dong-Oun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.179-180
    • /
    • 2018
  • This study aims to provide a more comfortable environment for the external environment by designing a rotable dwelling that deviates from the conventional fixed residential concept. The round pillars, which are the center of the building, are constructed by placing the CFT (concrete Filled steel Tube) technique in place and assembling modular houses with columns. This study combines existing building techniques. Korea also needs to develop various related studies quickly.

  • PDF

A Study on the Shape of Beam Attached CFT inner-side for Developing Column's Performance (콘크리트충전 강관기둥의 성능향상을 위한 내면부착 beam의 형상 연구)

  • Lee, Dong-Un;Yun, Hyug-Gee;Kim, Dea-Geon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.21-22
    • /
    • 2015
  • The CFT(Concrete Filled Tube) system has been developed to behave well in a structural performance such as stiffness, stress, ductility, fire resistance that is derived from its mechanical advantages of composite structure. There were number of studies about unprotected CFT columns for improving their fire resistance through reinforcing bars or plates being placed inside the steel tube. It was also known that reinforcing plates of flat type need stiffeners in a certain distance to avoid their buckling failure so it cost as much as their using consequentially. This paper is planned to test the work of beam elements attached inner side of CFT depending on its shape. More discussions on beam's design could be followed after some fire tests accordingly conducted within this project.

  • PDF

Advanced Analysis of Connections to Concrete-Filled Steel Tube Columns using the 2005 AISC Specification (AISC 2005 코드를 활용한 콘크리트 충전 합성기둥의 해석과 평가)

  • Park, Ji-Woong;Rhee, Doo-Jae;Chang, Suong-Su;Hu, Jong-Wan
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.3 no.3
    • /
    • pp.9-21
    • /
    • 2012
  • Concrete filled steel tube (CFT) columns have been widely used in moment resisting frame structures both in seismic zones. This paper discusses the design of such members based on the advanced methods introduced in the 2005 AISC Specification and the 2005 Seismic Provisions. This study focuses particularly on design following both linear and nonlinear methods utilizing equivalent static and dynamic loads for low-rise moment frames. The paper begins with an examination of the significance of pseudo-elastic design interaction equations and the plastic ductility demand ratios due to combined axial compressive force and bending moment in CFT members. Based on advanced computational simulations for a series of five-story composite moment frames, this paper then investigates both building performance and new techniques to evaluate building damage during a strong earthquake. It is shown that 2D equivalent static analyses can provide good design approximations to the force distributions in moment frames subjected to large inelastic lateral loads. Dynamic analyses utilizing strong ground motions generally produce higher strength ratios than those from equivalent static analyses, but on more localized basis. In addition, ductility ratios obtained from the nonlinear dynamic analysis are sufficient to detect which CFT columns undergo significant deformations.