• Title/Summary/Keyword: CFT 교각

Search Result 15, Processing Time 0.023 seconds

Parametric Study on Seismic Performance of Internally Confined Hollow CFT Column (내부 구속 중공 CFT 교각의 내진성능에 대한 매개변수 연구)

  • Yeom, Eung-Jun;Kim, Hyun-Jong;Han, Taek-Hee;Kang, Young-Jong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.1
    • /
    • pp.15-21
    • /
    • 2008
  • The internally confined hollow-concrete filled tube (ICH-CFT) column has two tubes on the both sides (hollow part and outer part) of the concrete. The inner tube and the outer tube perform great seismic abilities, ductility and absorption of energy due to the steel tubes and the hollow part. So, the study of this column type for the practical use is needed. In this study, the qualitative analysis about seismic capacities depending on parameters is performed for the practical design of the ICH-CFT column. The parameters are diameter of column, hollow ratio and thickness of tubes with the same resistance of the moment. Also, the economical evaluation of ductility and comparison with CFT column make this study to be of practical use. Especially, a change of seismic performance depends on the hollow ratio and the thickness of the outer tube, and the economical hollow ratios according to the thickness of the outer tube in the ICH-CFT column are suggested.

Evaluation of Flexural Behavior of a Modular Pier with Circular CFT (충전원형강관을 이용한 모듈러 교각의 휨 거동 평가)

  • Ma, Hyang Wook;Oh, Hyun Chul;Kim, Dong Wook;Kong, Davon;Shim, Chang Su
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.6
    • /
    • pp.725-734
    • /
    • 2012
  • A new modular pier system using concrete filled circular steel tubes was suggested to realize modular bridge substructures for accelerated bridge construction. Structural details and connection details were proposed by connection multiple concrete filled tubes (CFT) for standardized products of fabrication, delivery and erection. Static tests were performed for the modular pier with suggested details under lateral load conditions for weak and strong axes. Due to the eccentricity by the bracing system, the modular pier showed 5.23 times higher flexural stiffness and 6 times greater flexural strength from the test. It is proper for the rational design to evaluate stress and deformation by frame modeling of the modular CFT pier. Structural capacity of the pier can be obtained by adjusting the spacing of the CFT columns. Design recommendations were derived from the test.

A Study of Pier-Segment Joint for Fabricated Internally Confined Hollow CFT Pier (조립식 내부 구속 중공 CFT 교각을 위한 교각세그먼트 접합부 연구)

  • Won, Deok-Hee;Han, Taek-Hee;Lee, Dong-Jun;Kang, Young-Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.2
    • /
    • pp.161-171
    • /
    • 2010
  • Bridges have undergone distinctive development in accordance of the introduction of new materials and structural types. The importance on rapid construction technology is currently attracting more and more attention worldwidely as well as domestically because its effectiveness in reducing the overall construction cost. While a wide ranges of previous researches on rapid construction of super structures are available, the studies on substructures are quite limited. The development of the precast segmental internally confined hollow CFT piers are briefly introduced herein and design formulas are presented for pier segment joints, Also, a extensive parametric studies are carried out for the effect of the constitutive elements of the joints. Finally, the design formulas are verified throughout a series of extensive finite element analyses.

Behavior of the Foundation of Concrete Filled Steel Tubular Pier (CFT 교각 기초부의 거동특성)

  • Lee, Ha-Lim;Kim, Hee-Ju;Hwang, Won-Sup
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.5
    • /
    • pp.491-498
    • /
    • 2011
  • In this paper, extensive structural behavior and effects of design parameters of steel column-base plate connections under axial and lateral loads were investigated to improve structural details of CFT(Concrete Filled Steel Tube) pier foundation using commercial FE analysis program, ABAQUS. For this study, design criteria of pier foundation was analyzed and numerical study based on the experiment of previous study was conducted to verify analysis methods. The failure behavior and stress distribution of pier foundation were analyzed using the verified analysis method. Various design parameters(base plate, deformed bar, stiffness and sizes of column) were investigated to analyze effects of each design parameters in entire structure.

Seismic Performance of Column-Footing Connection of Modular Pier using CFT (CFT를 이용한 모듈러 교각 기둥-기초 연결부의 내진성능)

  • Kim, Ji Young;Kim, Ki Doo;Ma, Hyang Wook;Chung, Chul-Hun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.73-85
    • /
    • 2014
  • The CFT (Concrete Filled steel Tubes) column-footing connection is cast-in-place embedded type which provides simple construction procedure, low cost, and superior structural performance. In this study, CFT column-footing connection of modular pier is proposed and structural performance is evaluated by experimental tests. To evaluate structural performance of the CFT column-footing connection, a series of experimental tests were performed for the 4 specimens with different embedded depth. As a result of the quasi-static test, the specimen with 0.6D (0.6 times the outside diameter of steel tube) embedded depth showed relatively low ductility than other specimens with larger embedded depth due to cone failure of base concrete occurred during the lower loading step. On the contrary, cone failure of the base concrete was not observed in the specimens with larger embedded depth than 0.9D, but typical flexural failure in lower part of CFT column was observed. With the analyses of force-displacement curve, displacement ductility, and energy dissipation capacity, it is concluded that the rational range of embedded depth of the CFT column-footing connection is from 0.9D to 1.2D in view of good seismic performance.

Parametric Study on Seismic Performance of Internally Confined Hollow CFT Column (내부 구속 중공 CFT 교각의 내진성능에 대한 매개변수 연구)

  • Kim, Hyun-Jong;Yeom, Eung-Jun;Han, Taek-Hee;Kang, Young-Jong
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.144-147
    • /
    • 2007
  • Internally Confined Hollow-Concrete Filled Tube(ICH-CFT) column which has two tubes on both side of concrete, inner tube and outer tube perform great seismic abilities, ductility and absorption of energy, by the tubes and the hollow part. So this study does qualitative analysis about seismic capacities depending on parameters - diameter of column, hollow ratio, thickness of tubes - by moment-curvature analysis.

  • PDF

Ductility Evaluations of Internally Confined Hollow CFT Column (내부 구속 중공 CFT 교각의 연성도 평가)

  • Kim, Hyun-Jong;Youm, Enug-Jun;Han, Taek-Hee;Kang, Young-Jong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.683-687
    • /
    • 2007
  • Internally Confined Hollow-Concrete Filled Tube(ICH-CFT) column which has two tubes on both side of concrete, inner tube and outer tube perform great seismic abilities, ductility and absorption of energy, by the tubes and the hollow pmt. So this study does qualitative analysis about seismic capacities depending on parameters diameter of column, hollow ratio, thickness of tubes - by moment-curvature analysis.

  • PDF

Confining Stress of Internally Confined Hollow CFT Member Under Compression (압축을 받는 내부 구속 중공 CFT부재의 구속력 평가)

  • Yoon, Na Ri;Won, Deok Hee;Park, Jong Gun;Kang, Young Jong
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.37-37
    • /
    • 2011
  • 최근 세계적인 지진의 발생과 함께 구조물의 내진성능 평가 및 증진 방법에 대하여 많은 연구가 진행 되고 있다. 특히 교량 구조물의 교각의 경우에는 상부구조의 고정하중 및 활하중을 지반에 전달하여 주는 역할을 하기 때문에, 역으로 지진이 발생하였을 경우 교각의 내진성능에 따라서 교량의 안전도에 많은 영향을 미칠 수 있다. 또한 산악지역이 국토의 70%이상을 차지하는 우리나라의 지형적인 특성상 고교각을 이용한 장대교량의 건설이 필요하며 도시지역의 교통량 증가로 인한 도시고속도로의 건설 등 고가교의 필요성이 점차 증가하고 있다. 그러나 CFT(Concrete Filled Tube)부재의 경우에는 콘크리트가 3축 구속 상태로 존재하지만 자중이 크며 내진 성능이 떨어지는 단점을 가지고 있다. 이러한 단점을 보완하기 위하여 CFT부재의 단면을 중공으로 만듦으로써 부재를 경량화하고 내부 튜브를 삽입하여 내부를 구속 시킨 내부 구속 중공 CFT 부재(Internally Confined Hollow CFT Member, ICH CFT)가 개발되었다. 이는 콘크리트가 내 외부 튜브에 의하여 구속되어 3축 구속 상태로 존재함으로써 콘크리트 중공부로의 취성파괴를 방지하여 연성도 및 강도를 향상시켜주며, 단면의 감소로 인해 재료비를 절감 할 뿐 아니라 자중 감소로 인해 내진 설계에도 유리하다. 현재 내부 구속 중공 CFT 부재에 대한 연구가 많이 진행되고 있지만, 튜브를 삽입함으로써 부재의 중공부로 발생하는 구속력의 특성을 해석적으로 정립한 연구는 미비한 실정이다. 본 연구에서는 압축을 받는 중공 CFT 부재에 내부 튜브를 삽입함으로써 발생하는 콘크리트의 구속력을 해석적 연구를 통하여 수행하였으며, 구속력을 파악하기 위한 평가 방법으로는 구속 콘크리트의 중공비와 직경, 외부튜브의 두께, 내부튜브의 두께 등으로 평가하였다. 해석적 연구 결과, 내부 튜브를 삽입함으로써 발생되는 외부 구속력은 이론적 수식에 의한 구속 응력값과 비슷한 값을 가지지만 내부로 발생하는 구속력은 이론적 수식에 의한 구속 응력값에 도달하지 못하는 것을 확인할 수 있었다.

  • PDF

Evaluation of Structural Performance of Precast Modular Pier Cap (프리캐스트 모듈러 피어캡의 구조성능 평가)

  • Kim, Dong Wook;Shim, Chang Su
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.1
    • /
    • pp.55-63
    • /
    • 2015
  • Prefabrication technologies are making bridge construction safer and less disruptive to the environment and traveling public, making bridge designs more constructible and, improving the quality and durability by shifting site work to a more controllable environment. Modular bridge substructures with concrete-filled steel tube (CFT) piers and composite pier caps were suggested to realize accelerated bridge construction. The precast segmental pier cap consists of a composite pier table and precast prestressed segments on the table. The pier table has embedded steel section to mitigate stress concentration at the connection by small tubes. Each bridge pier has four or six CFT columns which connect to the pier cap. Shear strength of the pier cap was obtained by extending vertical reinforcing bars from the table to the precast segment. Transverse prestressing was introduced to control tensile stresses by service loadings. Structural performance of the proposed modular system was evaluated by static tests. Design requirements of the composite pier cap were satisfied by continuous reinforcing bars and prestressing tendons. Standardized modular substructures can be effectively utilized for the fast replacement or construction of bridges.