• 제목/요약/키워드: CFS(Correlation-based Feature Selection)

검색결과 7건 처리시간 0.024초

머신러닝 기반 CFS(Correlation-based Feature Selection)기법과 Random Forest모델을 활용한 BMI(Benthic Macroinvertebrate Index) 예측에 관한 연구 (A Study on the prediction of BMI(Benthic Macroinvertebrate Index) using Machine Learning Based CFS(Correlation-based Feature Selection) and Random Forest Model)

  • 고우석;윤춘경;이한필;황순진;이상우
    • 한국물환경학회지
    • /
    • 제35권5호
    • /
    • pp.425-431
    • /
    • 2019
  • Recently, people have been attracting attention to the good quality of water resources as well as water welfare. to improve the quality of life. This study is a papers on the prediction of benthic macroinvertebrate index (BMI), which is a aquatic ecological health, using the machine learning based CFS (Correlation-based Feature Selection) method and the random forest model to compare the measured and predicted values of the BMI. The data collected from the Han River's branch for 10 years are extracted and utilized in 1312 data. Through the utilized data, Pearson correlation analysis showed a lack of correlation between single factor and BMI. The CFS method for multiple regression analysis was introduced. This study calculated 10 factors(water temperature, DO, electrical conductivity, turbidity, BOD, $NH_3-N$, T-N, $PO_4-P$, T-P, Average flow rate) that are considered to be related to the BMI. The random forest model was used based on the ten factors. In order to prove the validity of the model, $R^2$, %Difference, NSE (Nash-Sutcliffe Efficiency) and RMSE (Root Mean Square Error) were used. Each factor was 0.9438, -0.997, and 0,992, and accuracy rate was 71.6% level. As a result, These results can suggest the future direction of water resource management and Pre-review function for water ecological prediction.

효과적인 의사결정을 위한 다중레이블 기반 속성선택 방법에 관한 연구: 감성 분석을 중심으로 (Exploring the Performance of Multi-Label Feature Selection for Effective Decision-Making: Focusing on Sentiment Analysis)

  • 원종윤;이건창
    • 경영정보학연구
    • /
    • 제25권1호
    • /
    • pp.47-73
    • /
    • 2023
  • 본 연구는 인공지능 기법 중 다중레이블 속성선택 방법을 적용하여 복잡한 경영환경에서 의사결정의 효과성을 증대시키는 방안을 설명한다. 인공지능 기반의 의사결정 시스템은 의사결정자의 선택과 판단을 돕거나, 대신하는 중요한 역할을 한다. 더욱이 최근 인공지능을 중심으로 한 비즈니스 의사결정은 기업의 성장 동력으로 평가받는데, 이를 위해서는 효과적인 의사결정 방법이 수반되어야 한다. 이에 본 연구는 의미 있는 속성값을 선별하는 CFS-BR(이진연관성 접근 기반의 상관관계 속성선택 모델)을 제안하여, 효과적인 의사결정을 지원하는 것을 돕는다. 예시데이터와 실증데이터의 분석 결과, CFS-BR은 유의미한 속성을 최상우선선별 알고리즘 기반으로 최상의 조합을 선별하므로 효율적 의사결정을 지원할 수 있고, 기존의 다중 레이블 속성선택 방법과 비교하였을 때 정확도가 높은 것으로 보아 효과적인 의사결정을 증대시키는 데 유용하다.

순차적으로 선택된 특성과 유전 프로그래밍을 이용한 결정나무 (A Decision Tree Induction using Genetic Programming with Sequentially Selected Features)

  • 김효중;박종선
    • 경영과학
    • /
    • 제23권1호
    • /
    • pp.63-74
    • /
    • 2006
  • Decision tree induction algorithm is one of the most widely used methods in classification problems. However, they could be trapped into a local minimum and have no reasonable means to escape from it if tree algorithm uses top-down search algorithm. Further, if irrelevant or redundant features are included in the data set, tree algorithms produces trees that are less accurate than those from the data set with only relevant features. We propose a hybrid algorithm to generate decision tree that uses genetic programming with sequentially selected features. Correlation-based Feature Selection (CFS) method is adopted to find relevant features which are fed to genetic programming sequentially to find optimal trees at each iteration. The new proposed algorithm produce simpler and more understandable decision trees as compared with other decision trees and it is also effective in producing similar or better trees with relatively smaller set of features in the view of cross-validation accuracy.

효과적 이모션마이닝을 위한 속성선택 방법에 관한 연구 (Exploring Feature Selection Methods for Effective Emotion Mining)

  • 어균선;이건창
    • 디지털융복합연구
    • /
    • 제17권3호
    • /
    • pp.107-117
    • /
    • 2019
  • 블로그, 소셜 미디어 등의 발달로 인해 점점 더 많은 사람들이 본인의 의견이나 감정을 표현하기 위해 온라인상에서 텍스트 문장을 작성한다. 그리고 이같은 온라인 텍스트 문장속에 숨겨져 있는 긍정 또는 부정등의 감성을 찾아내는 연구분야를 감성분석 이라고 한다. 그중에서도 이모션 마이닝은 사람들의 구체적인 이모션을 찾아내는데 초점을 맞춘 연구분야이다. 본 연구에서는 속성선택 방법과 단일 및 앙상블 분류기를 조합하여 효과적인 이모션 마이닝 예측모델을 제시하고자 한다. 이를 위해 두가지 대표적인 오픈 데이터인 Tweet와 SemEval2007 데이터를 이용하여 TF-IDF를 계산하고 백 오브 워즈(BOW: bag-of-words) 형태로 속성 셋을 구성하였다. 그리고 효과적인 이모션 마이닝이 될 수 있는 최적의 속성을 선택하기 위하여 상관관계 기반 속성선택(CFS), 정보획득 속성선택 (IG), 그리고 ReliefF 등 세가지 속성선택 방법을 적용하였다. 선택된 속성을 이용하여 아홉가지 분류기 모델로 이모션 마이닝의 정확도를 비교하였다. 실험 결과, Tweet 데이터는 의사결정나무(DT)가 CFS, IG, ReliefF에 의한 속성을 이용할 경우 정확도가 상승했고, 랜덤서브스페이스(RS)는 CFS, IG에 선택된 속성을 사용할 경우 정확도가 상승했다. SemEval2007 데이터는 ReliefF에 의해 선택된 속성으로 로지스틱 회귀분석(LR)을 적용하였을 때 정확도가 상승했고, 나이브 베이지안 네트워크(NBN)은 CFS, IG에 의한 속성을 사용할 경우 정확도가 상승하였다.

속성선택방법과 워드임베딩 및 BOW (Bag-of-Words)를 결합한 오피니언 마이닝 성과에 관한 연구 (Investigating Opinion Mining Performance by Combining Feature Selection Methods with Word Embedding and BOW (Bag-of-Words))

  • 어균선;이건창
    • 디지털융복합연구
    • /
    • 제17권2호
    • /
    • pp.163-170
    • /
    • 2019
  • 과거 10년은 웹의 발달로 인한 데이터가 폭발적으로 생성되었다. 데이터마이닝에서는 대용량의 데이터에서 무의미한 데이터를 구분하고 가치 있는 데이터를 추출하는 단계가 중요한 부분을 차지한다. 본 연구는 감성분석을 위한 재표현 방법과 속성선택 방법을 적용한 오피니언 마이닝 모델을 제안한다. 본 연구에서 사용한 재표현 방법은 백 오즈 워즈(Bag-of-words)와 Word embedding to vector(Word2vec)이다. 속성선택(Feature selection) 방법은 상관관계 기반 속성선택(Correlation based feature selection), 정보획득 속성선택(Information gain)을 사용했다. 본 연구에서 사용한 분류기는 로지스틱 회귀분석(Logistic regression), 인공신경망(Neural network), 나이브 베이지안 네트워크(naive Bayesian network), 랜덤포레스트(Random forest), 랜덤서브스페이스(Random subspace), 스태킹(Stacking)이다. 실증분석 결과, electronics, kitchen 데이터 셋에서는 백 오즈 워즈의 정보획득 속성선택의 로지스틱 회귀분석과 스태킹이 높은 성능을 나타냄을 확인했다. laptop, restaurant 데이터 셋은 Word2vec의 정보획득 속성선택을 적용한 랜덤포레스트가 가장 높은 성능을 나타내는 조합이라는 것을 확인했다. 다음과 같은 결과는 오피니언 마이닝 모델 구축에 있어서 모델의 성능을 향상시킬 수 있음을 나타낸다.

퍼지의사결정법에 기반한 대학의 컴퓨터교육 만족도 분석 (An analysis of satisfaction index on computer education of university based on Fuzzy Decision Making Method)

  • 류경현;황병곤
    • 한국멀티미디어학회논문지
    • /
    • 제16권4호
    • /
    • pp.502-509
    • /
    • 2013
  • 정보화시대에 대학에서의 교양 컴퓨터교육과정은 컴퓨터에 대한 소양을 쌓고 정보화 사회에 능동적으로 대처할 수 있는 능력을 배양하여 생산성 향상은 물론 국가 간의 경쟁력에서 뒤지지 않게 하는데 목표를 두고 있다. 본 논문에서는 대학생을 대상으로 컴퓨터교육 만족도에 영향을 미치는 결정적인 변인의 발견 및 만족도를 분석한다. 전처리과정으로 자바 기반의 기계 학습 도구인 상관에의한 특성선택을 사용하여 최적의 변인을 선택한다. 그리고 퍼지의사결정법에 기반하여 각 변인의 가중치를 사용하여 최적의 변인을 생성하였다. 본 논문의 연구결과는 컴퓨터교육 만족도 자료의 분석에서 퍼지의사결정법을 제안하고, 재현율과 정밀도 분석에 의해 만족도 평가에 대한 정확성을 확인하였다.

Analyzing Machine Learning Techniques for Fault Prediction Using Web Applications

  • Malhotra, Ruchika;Sharma, Anjali
    • Journal of Information Processing Systems
    • /
    • 제14권3호
    • /
    • pp.751-770
    • /
    • 2018
  • Web applications are indispensable in the software industry and continuously evolve either meeting a newer criteria and/or including new functionalities. However, despite assuring quality via testing, what hinders a straightforward development is the presence of defects. Several factors contribute to defects and are often minimized at high expense in terms of man-hours. Thus, detection of fault proneness in early phases of software development is important. Therefore, a fault prediction model for identifying fault-prone classes in a web application is highly desired. In this work, we compare 14 machine learning techniques to analyse the relationship between object oriented metrics and fault prediction in web applications. The study is carried out using various releases of Apache Click and Apache Rave datasets. En-route to the predictive analysis, the input basis set for each release is first optimized using filter based correlation feature selection (CFS) method. It is found that the LCOM3, WMC, NPM and DAM metrics are the most significant predictors. The statistical analysis of these metrics also finds good conformity with the CFS evaluation and affirms the role of these metrics in the defect prediction of web applications. The overall predictive ability of different fault prediction models is first ranked using Friedman technique and then statistically compared using Nemenyi post-hoc analysis. The results not only upholds the predictive capability of machine learning models for faulty classes using web applications, but also finds that ensemble algorithms are most appropriate for defect prediction in Apache datasets. Further, we also derive a consensus between the metrics selected by the CFS technique and the statistical analysis of the datasets.