• Title/Summary/Keyword: CFRP-strengthening

Search Result 262, Processing Time 0.024 seconds

The influence of strengthening the hollow steel tube and CFST beams using U-shaped CFRP wrapping scheme

  • Zand, Ahmed W. Al;Hosseinpour, Emad;Badaruzzaman, Wan Hamidon W.
    • Structural Engineering and Mechanics
    • /
    • v.66 no.2
    • /
    • pp.229-235
    • /
    • 2018
  • This study investigated the behaviour of the simply supported hollow steel tube (HST) beams, either concrete filled or unfilled when strengthened with carbon fibre reinforced polymer (CFRP) sheets. Eight specimens with varied tubes thickness (sections classification 1 and 3) were all tested experimentally under static flexural loading, four out of eight were filled with normal concrete (CFST beams). Particularly, the partial CFRP strengthening scheme was used, which wrapped the bottom-half of the beams cross-section (U-shaped wrapping), in order to use the efficiency of high tensile strength of CFRP sheets at the tension stress only of simply supported beams. In general, the results showed that the CFRP sheets significantly improved the ultimate strength and energy absorption capacities of the CFST beams with very limited improvement on the related HST beams. For example, the load and energy absorption capacities for the CFST beams (tube section class 1) were increased about 20% and 32.6%, respectively, when partially strengthened with two CFRP layers, and these improvements had increased more (62% and 38%) for the same CFST beams using tube class 3. However, these capacities recorded no much improvement on the related unfilled HST beams when the same CFRP strengthening scheme was adopted.

Slender RC columns strengthened with combined CFRP and steel jacket under axial load

  • Lu, Yi-yan;Li, Na;Li, Shan;Ou, Tian-yan
    • Steel and Composite Structures
    • /
    • v.19 no.5
    • /
    • pp.1077-1094
    • /
    • 2015
  • This paper presents an experimental study on the effectiveness of simultaneous application of carbon fiber-reinforced polymer (CFRP) and steel jacket in strengthening slender reinforced concrete (RC) column. The columns were 200 mm square cross section with lengths ranging from 1600 to 3000 mm. Ten columns were tested under axial load. The effects of the strengthening technique, slenderness ratio, cross-section area of steel angle and CFRP layer number were examined in terms of axial load-axial strain curve, CFRP strain, steel strip strain and steel angle strain. The experiments indicate that strengthening RC columns with combined CFRP and steel jacket is effective in enhancing the load capacity, ductility and energy dissipation capacity of RC column. Based on the existing models for RC columns strengthened with CFRP and with steel jacket, a design formula considering a slenderness reduction factor is proposed to predict the load capacity of the RC columns strengthened with combined CFRP and steel jacket. The predictions agree well with the experimental results.

Development of Flexural Capacity of RC Beam by CFRP Strengthening Methods (CFRP 보강공법에 따른 RC보의 휨성능 개선효과)

  • Hong Ki Nam;Han Sang Hoon;Kim Hyung Soo;Woo Sang Kyun;Song Young chul;Kim Hyung Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.133-136
    • /
    • 2005
  • Experimental research was conducted to investigate the characteristic of various CFRP strengthening methods. A total of 4 specimens of 3.3m length were tested in four point bending after strengthening them with externally bonded CFRP plates. The CFRP plates were bonded without prestress or with prestress levels of CFRP plate strain $0.5\%$. The non-prestressed specimen without anchor plate failed by separation of the plate from the beam due to premature debonding while the non-prestressed specimen with anchor plate failed by CFRP fracture and showed the significant increase of ductility capacity. In addition, the prestressed specimens failed by concrete compression failure. The maximum load and ductility capacity were most significantly increased.

  • PDF

Long-term Mechanical Behavior of CFRP-strengthened Steel Members for a Truss Tower

  • Nakamoto, Daiki;Yoresta, Fengky Satria;Matsui, Takayoshi;Mieda, Genki;Matsuno, Kazunari;Matsumoto, Yukihiro
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.4
    • /
    • pp.343-349
    • /
    • 2020
  • This research aimed to clarify the long-term mechanical performance of a steel truss member strengthened by a carbon fiber-reinforced polymer (CFRP) without protective coating through exposure testing. Strengthening and repair methods using CFRP have been developed in recent years; however, there is a lack of durability research for CFRP-strengthened members, especially mechanical performance investigation according to actual exposure testing. In this study, 10 CFRP-strengthening steel specimens were created in 2015, and elastic bending tests were conducted biannually. Eventually, although resin loss occurred due to environmental effects, the mechanical performance of CFRP-strengthened steel was not degraded, and we propose a calculation method of bending stiffness to evaluate the lower value of stiffness for design.

Performance of Reinforced Concrete Beams Strengthened with Bi-directional CFRP Strips (이 방향 탄소섬유 스트립을 사용하여 보강된 콘크리트 보의 거동에 대한 연구)

  • Kim, Changhyuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.30-36
    • /
    • 2018
  • Researches on strengthening and rehabilitation are important since structural capacity is degraded by deterioration or damage of structural members. An effective strengthening scheme such as an externally bonded Carbon Fiber Reinforced Polymers (CFRP) can improve the structural performance of a concrete structure in a cost-effective way. Therefore, many experimental studies on strengthening methods have been widely carried out. In regards to the shear strengthening of a concrete beam, variables of the experimental studies were the amount of CFRP, the angle of the strip, the width of the strip, and the interaction between the materials. However, there are insufficient researches on bi-directional CFRP layout compared to the previous researches. In this study, a total of ten concrete beams were designed and tested to evaluate the shear strengthening effect using CFRP strips. The effectiveness of strengthening was investigated based on the shear contribution of materials, strain distribution of stirrup, and the maximum shear capacity of specimens.

The Study on Improvement of Flexural Performance of RC Beam Strengthened with CFRP Plate (탄소섬유보강판으로 보강된 철근콘크리트 보의 휨성능 개선에 관한 연구)

  • 한상훈;최만용;조홍동;박중열;황선일;김경식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.399-404
    • /
    • 2002
  • This paper presents the results cf research on improved flexural performance cf reinforced concrete beams strengthened with bonded carbon fiber reinforced polymer plate. Recently, strengthening technique with CFRP plate were almost carried out by external bonding. But current external bonding technique cf CFRP plates may result in debonding CFRP plate. Therefore, this study proposes a strengthening method that prevents or delays debonding between CFRP plates and concrete and at the same time improves the strength. For this test, there were only 14 test beams manufactured and failure load, deflection, strains and modes cf failure have been examined Test variables included the type cf strengthening, steel ratio and strengthening length, and the effects according to each test variables were analyzed. The experimental results show that the strength and stiffness cf the beam significantly increased between 34.55 and 116.51% and the increase cf the more lead-carrying capacity than the control beams.

  • PDF

Strengthening Effect of Axial Circular Concrete Members Wrapped by CFRP sheet (CFRP sheet로 감싼 원형 콘크리트 압축부재의 보강 효과)

  • Moon, Kyoung-Tae;Park, Sang-Yeol;Kim, Moon-Kwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.5
    • /
    • pp.10-21
    • /
    • 2015
  • Many studies have been carried out on carbon fiber-reinforced plastic sheet(hereafter CFRP sheet)-confined concrete specimens for improve structural performance of concrete structures. To complement the existing studies, a parametric study is conducted to examine the effect of various design parameters such as layers of CFRP sheet, size and aspect ratio of specimens, and overlap length. The behavior of CFRP-confined concrete is compared using stress-strain curves of each specimen. And the strengthening effect of CFRP sheet is examined by maximum compressive strength. As the layers of CFRP sheet increases, structural performance of CFRP-confined concrete is significant increased. If the overlap length is more than 5% of circumstance, strengthening effect is not affected. In addition, a test database assembled from test results and existing studies is presented. Using these test database, accuracy and reliability of the existing strength models for CFRP-confined concrete are verified.

Strengthening of steel-concrete composite beams with prestressed CFRP plates using an innovative anchorage system

  • Wan, Shi-cheng;Huang, Qiao;Guan, Jian
    • Steel and Composite Structures
    • /
    • v.32 no.1
    • /
    • pp.21-35
    • /
    • 2019
  • This study investigates the flexural behavior of steel-concrete composite beams strengthened with prestressed carbon fiber-reinforced polymer (CFRP) plates. An innovative mechanical anchorage system was developed. The components of the system can be easily assembled on site before applying a prestressing force, and removed from the structures after strengthening is completed. A total of seven steel-concrete composite specimens including four simply supported beams strengthened at the positive moment region and three continuous beams strengthened at the negative moment region were tested statically until failure. Experimental results showed that the use of prestressed CFRP plates enhanced the flexural capacity and reduced the mid-span deflection of the beams. Furthermore, by prestressing the CFRP laminates, the material was used more efficiently, and the crack resistance of the continuous composite specimens at the central support was significantly improved after strengthening. Overall, the anchorage system proved to be practical and feasible for the strengthening of steel-concrete composite beams. The theoretical analysis of ultimate bearing capacity is reported, and good agreement between analytical values and experimental results is achieved.

CFRP strengthening of steel beam curved in plan

  • Keykha, Amir Hamzeh
    • Steel and Composite Structures
    • /
    • v.41 no.5
    • /
    • pp.637-648
    • /
    • 2021
  • Nowadays, one of the practical, fast and easy ways to strengthen steel elements is the use of Carbon Fiber Reinforced Polymer (CFRP). Most previous research in the CFRP strengthening of steel members has carried out on straight steel members. The main difference between horizontal curved beams and straight beams under vertical load is the presence of torsional moment in the horizontal curved beams. In the other words, the horizontal curved beams are analyzed and designed for simultaneous internal forces included bending moment, torsional moment, and shear force. The horizontal curved steel beams are usually used in buildings, bridges, trusses, and others. This study explored the effect of the CFRP strengthening on the behavior of the horizontal curved square hollow section (SHS) steel beams. Four specimens were analyzed, one non-strengthened curved steel beam as a control column and three horizontal curved steel beams strengthened using CFRP sheets (under concentrated load and uniform distributed load). To analyze the horizontal curved steel beams, three dimensional (3D) modeling and nonlinear static analysis methods using ANSYS software were applied. The results indicated that application of CFRP sheets in some specific locations of the horizontal curved steel beams could increase the ultimate capacity of these beams, significantly. Also, the results indicated when the horizontal curved steel beams were under distributed load, the increase rate in the ultimate capacity was more than in the case when these beams were under concentrated load.

Efficacy of CFRP configurations for shear of RC beams: experimental and NLFE

  • Shuraim, Ahmed B.
    • Structural Engineering and Mechanics
    • /
    • v.39 no.3
    • /
    • pp.361-382
    • /
    • 2011
  • This paper presents the results of an investigation on shear strengthening of RC beams externally reinforced with CFRP composite. A total of six full-scale beams of four CFRP strengthened and two unstrengthened were tested in the absence of internal stirrups in the shear span. The strengthening configurations contained two styles: discrete uniformly spaced strips and customized wide strips over B-regions. The composite systems provided an increase in ultimate strength as compared to the unstrengthened beams. Among the three layouts that had the same area of CFRP, the highest contribution was provided by the customized layout that targeted the B-regions. A comparative study of the experimental results with published empirical equations was conducted in order to evaluate the assumed effective strains. The empirical equations were found to be unconservative. Nonlinear finite element (NLFE) models were developed for the beams. The models agreed with test results that targeting the B-region was more effective than distributing the same CFRP area in a discrete strip style over shear spans. Moreover, the numerical models predicted the contribution of different configurations better than the empirical equations.