• Title/Summary/Keyword: CFRP-bar

Search Result 57, Processing Time 0.025 seconds

Reinforcing effect of CFRP bar on concrete splitting behavior of headed stud shear connectors

  • Huawen Ye;Wenchao Wang;Ao Huang;Zhengyuan Wang
    • Steel and Composite Structures
    • /
    • v.48 no.2
    • /
    • pp.131-143
    • /
    • 2023
  • The CFRP bar was used to achieve more ductile and durable headed-stud shear connectors in composite components. Three series of push-out tests were firstly conducted, including specimens reinforced with pure steel fibers, steel and CFRP bars. The distributed stress was measured by the commercial PPP-BOTDA (Pre-Pump-Pulse Brillouin optical time domain analysis) optical fiber sensor with high spatial resolution. A series of numerical analyses using non-linear FE models were also made to study the shear force transfer mechanism and crack response based on the test results. Test results show that the CFRP bar increases the shear strength and stiffness of the large diameter headed-stud shear connection, and it has equivalent reinforcing effects on the stud shear capacity as the commonly used steel bar. The embedded CFRP bar can also largely improve the shear force transfer mechanism and decrease the tensile stress in the transverse direction. The parametric study shows that low content steel fibers could delay the crack initiation of slab around the large diameter stud, and the CFRP bar with normal elastic modulus and the standard reinforcement ratio has good resistance to splitting crack growth in headed stud shear connectors.

Service life prediction of CFRP bar for concrete reinforcement based on accelerated degradation tests (가속열화시험에 의한 콘크리트용 탄소섬유 강화플라스틱 바의 사용수명 예측)

  • Kwon, Young-Il;Kim, Seung-Jin;Lee, Hyoung-Wook
    • Journal of Applied Reliability
    • /
    • v.9 no.2
    • /
    • pp.71-80
    • /
    • 2009
  • This paper discusses the service life prediction methods for CFRP bar for concrete reinforcement using accelerated degradation tests. The relationship between performance degradation and the rate of a failure-causing chemical reaction is assumed for the temperature accelerated degradation tests. Methods of obtaining acceleration factors and predicting service life of the CFRP bar using the degradation model are presented.

  • PDF

Flexural behaviour of reinforced low-strength concrete beams strengthened with CFRP plates

  • Boukhezar, Mohcene;Samai, Mohamed Laid;Mesbah, Habib Abdelhak;Houari, Hacene
    • Structural Engineering and Mechanics
    • /
    • v.47 no.6
    • /
    • pp.819-838
    • /
    • 2013
  • This paper summarises the results of an experimental study to investigate the flexural behaviour of reinforced concrete beams strengthened using carbon-fibre reinforced polymer (CFRP) laminate in four-point bending. The experimental parameters included are the reinforcing bar ratio ${\rho}_s$ and preload level. Four bar ratios were selected (${\rho}_s=0.13$ to 0.86%), representing the section of two longitudinal tensile reinforcements, with diameters of 8, 14, 16, and 20 mm in order to reveal the effect of bar ratio on failure load and failure mode. Eight beams that could be considered "full-scale" in size, measuring 200 mm in width, 400 mm in total height and 2300 mm in length, were tested. Three beams were selected with different bar ratios (${\rho}_1$, ${\rho}_2$, ${\rho}_3$), and considered as control specimens (without ), while three other beams identical to the control beams with the same CFRP laminates ratio and a seventh beam with ${\rho}_{min}$ (the lowest bar ratio) were also used. In the second part of the study, two beams with the bar ratio ${\rho}_2$ were preloaded at two levels, 50 and 100% of their ultimate loads, and then repaired. This experimental investigation was consolidated using an analytical model. The experimental and analytical results indicate that the flexional capacity and stiffness of strengthened and repaired beams using CFRP laminate were increased compared to those of control beams, and the behaviour of repaired beams was nearly similar to the undamaged and strengthened beams; unlike the ductility of strengthened beams, which was greatly reduced compared to the control.

A Study on the Estimation of Dynamic Interlaminar Fracture Toughness on CFRP Laminates Plates (CFRP 적층판의 동적 층간파괴인성의 평가법)

  • 김지훈;김영남;판부직규;양인영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.80-91
    • /
    • 1998
  • In this paper, the estimation of dynamic interlaminar fracture toughness on fracture mode II in CFRP(carbon fiber reinforced plastics) laminates in made. Dynamic ENF(End Notched Flexure) apparatus used in this paper is manufactured by suing Split Hopkinson Pressure Bar. The static and impact load history in the CFRP specimen is measured by using manufactured dynamic ENF tester and 3-point bending test is carried out to find the load history. Also dynamic interlaminar fracture toughness can be found by using the J integral obrained from dynamic analysis in consideration of intertia-force effect.

  • PDF

Investigation for the Efficiency in Flexural Design of CFRP Bar-Reinforced Concrete Slab (CFRP 보강근 보강 콘크리트 슬래브 휨설계의 효율성에 관한 연구)

  • Kang, Su-Tae;Yang, Eun-Ik;Choi, Myung-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.4
    • /
    • pp.81-90
    • /
    • 2022
  • In this study, for one-way concrete slabs, the flexural strength, deflection, and crack width according to the amount of reinforcing bars were compared for the cases of using steel reinforcing bars and CFRP reinforcing bars. Critical performance dominating the flexural design was investigated and how to design the CFRP-reinforced concrete slab with efficiency was also discussed. It was found that CFRP-reinforced concrete slabs could achieve greater design flexural strength with the same amount of reinforcing bars compared to those using steel rebar, while deflection and crack width were relatively much larger. In concrete slabs using CFRP reinforcing bars, it was confirmed that the maximum crack width acts as a dominant factor in the design. For more efficient flexural design, it is necessary to mitigate the allowable crack width to 0.7 mm and to apply smaller diameter reinforcing bars to control the crack width.

Evaluation of Fracture Toughness of Dynamic Interlaminar for CFRP Laminate Plates by Resin Content (수지함량에 따른 CFRP 적층판의 층간파괴 인성평가)

  • 김지훈;양인영;심재기
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.4
    • /
    • pp.43-49
    • /
    • 2003
  • This research work has been carried out for finding J-integral in mode II of CFRP(carbon fiber reinforced plastics) laminate plates based on the classical bar theory in dynamic conditions with consideration of the effect of inertia forces, eventually to lead to finding the dynamic inter-layer fracture toughness. Dynamic inter-layer fracture toughness was found by a self-made ENF(End Notched Flexure) experimental apparatus using Split Hopkinson's Bar(SHPB), and also observed the variation of the fracture toughness haying different resin contents and fiber arrangements of CFRP specimen([$0_3^{\circ}/90_3^{\circ}/0_6^{\circ}/90_3^{\circ}/0_3^{\circ}$], [$0_{20}^{\circ}$], [$0_5^{\circ}/90_{10}^{\circ}/0_5^{\circ}$]). As an experimental result, in either cases of quasi-static or dynamic load condition, the critical load and the inter-layer fracture toughness increased sharply depending on the increase of resin contents. Therefore, it could, be concluded that the effect by resin contents is the major factor determining the inter-layer fracture toughness in the CFRP laminate plates.

Tests of concrete slabs reinforced with CFRP prestressed prisms

  • Liang, Jiongfeng;Yu, Deng;Yang, Zeping;Chai, Xinjun
    • Computers and Concrete
    • /
    • v.18 no.3
    • /
    • pp.355-366
    • /
    • 2016
  • This paper reports the testing of concrete slabs reinforced with CFRP prestressed concrete prisms(PCP) on the flexural behavior. Four concrete slabs were tested, a reference slab reinforced with steel bars, and three slabs reinforced with CFRP prestressed concrete prisms (PCP). All slabs were made with dimensions of 600mm in width, 2200mm in length and 150 in depth. All concrete slabs reinforced with CFRP prestressed concrete prisms(PCP) exhibited CFRP bar rupture failure mode. It was shown that the application of the CFRP prestressed prisms can limit service load deflections and crack width, the increased level of prestress in the CFRP prestressed prism positively affected the maximum crack width. The deflection of concrete slabs reinforced with CFRP prestressed prisms decreased as prestress in the CFRP prestressed prism increased.

Corrosion of rebar in carbon fiber reinforced polymer bonded reinforced concrete

  • Bahekar, Prasad V.;Gadve, Sangeeta S.
    • Advances in concrete construction
    • /
    • v.8 no.4
    • /
    • pp.247-255
    • /
    • 2019
  • Several reinforced concrete structures that get deteriorated by rebar corrosion are retrofitted using Carbon Fiber Reinforced Polymer (CFRP). When rebar comes in direct contact with CFRP, rebar may corrode, as iron is more active than carbon. Progression of corrosion of rebar in strengthened RC structures has been carried out when rebar comes in direct contact with CFRP. The experimentation is carried out in two phases. In phase I, corrosion of bare steel bar is monitored by making its contact with CFRP. In phase II, concrete specimens with surface bonded CFRP were casted and subjected to the realistic exposure conditions keeping direct contact between rebar and CFRP. Progression of corrosion has been monitored by various parameters: Half-cell potential, Tafel extrapolation and Linear Polarisation Resistance. On termination of exposure, to find residual bond stress between rebar and concrete, pull-out test was performed. Rebar in contact with CFRP has shown substantially higher corrosion. The level of corrosion will be more with more area of contact.

Post-Thermal Exposure Bond Strength Properties of CFRP and GFRP in Concrete (콘크리트 고온 가열 이후 CFRP와 GFRP의 부착강도 특성)

  • Kim, Ju-Sung;Jeong, Su-Mi;Kim, Young-Jin;Park, Sun-Gyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.5
    • /
    • pp.509-517
    • /
    • 2023
  • The surge in FRP(Fiber Reinforced Plastic) research signifies the industry's pursuit to counteract the longstanding issue of rebar corrosion. Notably, Carbon Fiber Reinforced Plastic(CFRP) emerges as a commendable alternative, given its superior resistance to both corrosion and chemical interactions, thus positing itself as a potential replacement for traditional steel rebars. However, the layered composition of fibers and resin in CFRP flags a notable susceptibility to elevated temperatures. Despite its promise, comprehensive studies elucidating the full spectrum of CFRP properties remain ongoing. In this investigative study, we meticulously assessed the bond strength of CFRP post-exposure to high thermal conditions. Our findings underscored a parity in bond strength amongst silica sand-coated CFRP, rib-type CFRP, and Glass Fiber Reinforced Plastic(GFRP).

Steel-CFRP composite and their shear response as vertical stirrup in beams

  • Uriayer, Faris A.;Alam, Mehtab
    • Steel and Composite Structures
    • /
    • v.18 no.5
    • /
    • pp.1145-1160
    • /
    • 2015
  • An experimental study was conducted for the effectiveness of steel-CFRP composite (CFRP laminates sandwiched between two steel strips) as stirrups in concrete beam to carry shearing force and comparison was made with conventional steel bar stirrups. A total numbers of 8 concrete beams were tested under four point loads. Each beam measured 1,600 mm long, 160 mm width and 240 mm depth. The beams were composed of same grade of concrete, with same amount of flexural steel but different shear reinforcements. The main variables include, type of stirrups (shape of stirrups and number of CFRP layers used in each stirrup) and number of stirrups used in shear spans. After getting on an excellent closeness between the values of ultimate shear resistance and ultimate tensile load of steel-CFRP stirrups, it could be concluded that the steel-CFRP stirrups represent the effective solution of premature failure of FRP stirrups at the bends.