• 제목/요약/키워드: CFRP sheets

검색결과 138건 처리시간 0.03초

Repair of flange damage steel-concrete composite girders using CFRP sheets

  • Wang, Lianguang;Hou, Wenyu;Han, Huafeng;Huo, Junhua
    • Structural Engineering and Mechanics
    • /
    • 제55권3호
    • /
    • pp.511-523
    • /
    • 2015
  • Damaged steel-concrete composite girders can be repaired and retrofitted by epoxy-bonded carbon fiber-reinforced polymer (CFRP) sheets to the critical areas of tension flanges. This paper presents the results of a study on the behavior of damaged steel-concrete composite girders repaired with CFRP sheets under static loading. A total of seven composite girders made of I20A steel sections and 80mm-thick by 900mm-wide concrete slabs were prepared and tested. CFRP sheets and prestressed CFRP sheets were used to repair the specimens. The specimens lost the cross-sectional area of their tension flanges with 30%, 50% and 100%. The results showed that CFRP sheets had no significant effect on the yield loads of strengthened composite girders, but had significant effect on the ultimate loads. The yield loads, elastic stiffness, and ultimate bearing capacities of strengthened composite girders had been changed as a result of prestressed CFRP sheets, the utilization ratio of CFRP sheets could be effectively improved by applying prestress to CFRP sheets. Both the yield loads and ultimate bearing capacities had been changed as a result of steel beam's flange damage level and CFRP sheets could cover the girders' shortage of bearing capacity with 30% and 50% flange damage, respectively.

Comparative experimental assessment of seismic rehabilitation with CFRP strips and sheets on RC frames

  • Kakaletsis, D.J.
    • Earthquakes and Structures
    • /
    • 제10권3호
    • /
    • pp.613-628
    • /
    • 2016
  • The effectiveness of the use of modern repair schemes for the seismic retrofit of existing RC structures were assessed on a comparative experimental study of carbon fiber-reinforced polymer (CFRP) strips and sheets for the repair of reinforced concrete members of RC frames, damaged because of cyclic loading. Two virgin, single - story, one - bay, 1/3 - scale frame specimens were tested under cyclic horizontal loading, up to a drift level of 4%. Then, virgin specimens, B and F, respectively, were repaired and retested in the same way. One, specimen RB, was repaired with epoxy injections and CFRP strips and one, specimen RF, was repaired with epoxy injections and CFRP sheets. The two specimens are used to examine the differences between the structural behavior of frames repaired using CFRP strips and frames repaired using CFRP sheets. Both qualitative and quantitative conclusions, based on the observed maximum loads, loading and reloading stiffness, hysteretic energy absorption and failure mechanisms are presented and compared. The repaired frames recovered their strength, stiffness and energy dissipated reasonably. The use of CFRP sheets was found more effective than CFRP strips, due to the proper anchorage.

CFRP 시트로 부분 휨 보강된 철근콘크리트 보의 유한요소해석 (FEA for RC Beams Partially Flexural Reinforced with CFRP Sheets)

  • 김건수;박기태;김병철;김재환;정규산
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제24권5호
    • /
    • pp.9-16
    • /
    • 2020
  • CFRP 시트를 이용한 RC 구조물의 보강은 다양한 방법으로 적용되어 왔으며, 관련 연구도 오랜 기간 수행되어 왔다. 하지만 CFRP 보강에 대한 연구는 대부분 실험적으로 수행되어, 다양한 변수 효과를 효율적으로 분석하기에는 한계가 있었다. 본 연구에서는 CFRP 시트로 보강된 RC 보의 구조거동을 ABAQUS 프로그램을 이용하여 수치해석적으로 분석하였다. RC 보 하면과 시트 사이에 Cohesive 요소를 적용하여 CFRP 보강 RC 보의 주요 파괴모드인 CFRP 시트 탈락을 모사하였다. CFRP 시트 탈락에 의한 급격한 비선형 문제 및 효율적인 유한요소해석을 위하여 준정적 해석 기법과 2 차원 대칭 모델을 사용하였다. 본 연구에서 수행한 유한요소해석 결과는 기존 실험결과를 잘 반영하는 것을 확인하였으며, CFRP 보강 수준과 최대 강도, 초기 강성, 파괴시점의 관계를 분석하였다. 총 31개 모델에 대한 유한요소해석을 수행한 결과 보강 수준의 증가에 따라 최대 강도 및 초기 강성이 sin 함수 형태로 증가하는 것을 확인하였다. 또한 과도한 CFRP 시트 보강은 파괴시점을 앞당겨 보강 구조물의 취성파괴를 야기할 수 있음을 확인하였으며, 이를 방지하기 위한 적절한 수준의 CFRP 시트 보강 설계가 필요할 것으로 판단된다.

Finite element analysis of shear-deficient RC beams strengthened with CFRP strips/sheets

  • Lee, H.K.;Ha, S.K.;Afzal, M.
    • Structural Engineering and Mechanics
    • /
    • 제30권2호
    • /
    • pp.247-261
    • /
    • 2008
  • Performance of shear-deficient reinforced concrete (RC) beams strengthened with carbon fiber-reinforced polymer (CFRP) strips/sheets is analyzed through numerical simulations on four-point bending tests. The numerical simulations are carried out using the finite element (FE) program ABAQUS. A micromechanics-based constitutive model (Liang et al. 2006) is implemented into the FE program ABAQUS to model CFRP strips/sheets. The predicted results are compared with experiment data (Khalifa and Nanni 2002) to assess the accuracy of the proposed FE analysis approach. A series of numerical tests are conducted to investigate the influence of stirrup lay-ups on the shear strengthening performance of the CFRP strips/sheets, to illustrate the influence of the damage parameters on the microcrack density evolution in concrete, and to investigate the shear and flexural strengthening performance of CFRP strips/ sheets. It has been shown that the proposed FE analysis approach is suitable for the performance prediction of RC beams strengthened with CFRP strips/sheets.

An experimental investigation of the flexural strengthening of preloaded self-compacted RC beams using CFRP sheets and laminates composites

  • Lattif, Youssef;Hamdy, Osman
    • Advances in concrete construction
    • /
    • 제13권4호
    • /
    • pp.307-313
    • /
    • 2022
  • This paper performs an experimental study on the flexural behavior of preloaded reinforced self-compacted concrete beams strengthened with carbon fiber reinforced polymers CFRP. A group of six preloaded strengthened beams was investigated along with one unstrengthened beam used as a reference beam RB. All beams have the same dimensions and reinforcement details: three beams are strengthened with CFRP laminates against flexural failure and three beams are strengthened with CFRP sheets. For simulating actual conditions, the beams are loaded before strengthening. Then, after strengthening, the beams are tested for flexural strength using 4-point loads where cracked and ultimate load and failure mode, along with load-deflection relation are recorded. To study the different configurations of strengthening, one layer, two layers, and U-wrap formation of laminates and sheets are considered. The results show that strengthing the RC beams using CFRP is an effective method to increase the beam's capacity by 47% up to 153% where deflection is reduced by 5%-80%. So, the beams strengthened with CFRP laminates have higher load capacity and lower ductility in comparison with the beams strengthened with CFRP sheets.

탄소섬유쉬트(CFRP Sheets)로 보강된 장주 각형강관기둥의 중심축하중거동 (Behaviors of Long Square Hollow Section Columns Retrofitted using Carbon Fiber Reinforced Polymer Sheets(CFRP Sheets) Subjected to Concentrated Axial Loading)

  • 박재우;최선규;유정한
    • 한국강구조학회 논문집
    • /
    • 제25권3호
    • /
    • pp.299-305
    • /
    • 2013
  • 본 연구에서는 각형 중공강관(SHS) 장주기둥에 CFRP쉬트를 길이방향으로 보강하여 중심축하중 실험을 수행하였다. 총 3개의 장주실험체와 1개의 stub column 실험체를 제작하였으며, 실험변수는 CFRP 보강겹수이다. 실험결과 장주기둥에 대해 실험체 중간에서 전체좌굴이 발생하며 횡변위가 발생하여 파괴되었지만, CFRP쉬트의 보강을 통해 전체좌굴을 제어하며 횡변위로 인한 안정성을 확보하였다. 또한 CFRP쉬트의 보강으로 최대 22%의 내력이 상승하여 내력상승효과를 확인할 수 있었다.

탄소섬유쉬트(CFRP Sheets)로 보강된 폭두께비가 큰 콘크리트 충전 각형강관 기둥의 중심축하중거동 (Axial Loading Behaviors of Square Concrete-Filled Tubular Columns with Large Width-to-Thickness Ratio Retrofitted using Carbon Fiber Reinforced Polymer Sheets(CFRP Sheets))

  • 박재우;유정한
    • 한국강구조학회 논문집
    • /
    • 제26권3호
    • /
    • pp.169-176
    • /
    • 2014
  • 본 연구에서는 콘크리트 충전 각형강관 (CFTP) 단주기둥에 CFRP 쉬트를 횡방향으로 보강하고 중심축하중 실험을 수행하였다. 실험변수는 b/t, CFRP쉬트 보강겹수이며, 총 6개의 실험체가 제작되었다. 실험변수로 사용된 판폭두께비는 b/t는 60, 80, 100이고 CFRP쉬트는 3겹 보강하였다. 실험결과 판폭두께비 100 실험체에서 CFRP쉬트 3겹 보강을 통해 내력을 16% 상승시켜 보강효과를 검증하였다. 내력 저하율을 검토한 결과 국부좌굴이 발생하지 않는 단면강도를 기준으로 최대 41%정도 내력이 저하되었으나, CFRP보강을 통해 32% 정도의 내력이 저하되어 보강효과를 검증할 수 있었다. 하중-변형를 관계를 보면 강재는 항복강도 이전에 국부좌굴이 발생하였으며, CFRP쉬트의 보강을 통해 국부좌굴을 지연시킴을 확인하였다.

Flexural ductility of reinforced HSC beams strengthened with CFRP sheets

  • Hashemi, Seyed Hamid;Maghsoudi, Ali Akbar;Rahgozar, Reza
    • Structural Engineering and Mechanics
    • /
    • 제30권4호
    • /
    • pp.403-426
    • /
    • 2008
  • Externally bonding fiber reinforced polymer (FRP) sheets with an epoxy resin is an effective technique for strengthening and repairing reinforced concrete (RC) beams under flexural loads. Their resistance to electro-chemical corrosion, high strength-to-weight ratio, larger creep strain, fatigue resistance, and nonmagnetic and nonmetallic properties make carbon fiber reinforced polymer (CFRP) composites a viable alternative to bonding of steel plates in repair and rehabilitation of RC structures. The objective of this investigation is to study the effectiveness of CFRP sheets on ductility and flexural strength of reinforced high strength concrete (HSC) beams. This objective is achieved by conducting the following tasks: (1) flexural four-point testing of reinforced HSC beams strengthened with different amounts of cross-ply of CFRP sheets with different amount of tensile reinforcement up to failure; (2) calculating the effect of different layouts of CFRP sheets on the flexural strength; (3) Evaluating the failure modes; (4) developing an analytical procedure based on compatibility of deformations and equilibrium of forces to calculate the flexural strength of reinforced HSC beams strengthened with CFRP composites; and (5) comparing the analytical calculations with experimental results.

Studying the effects of CFRP and GFRP sheets on the strengthening of self-compacting RC girders

  • Mazloom, Moosa;Mehrvand, Morteza;Pourhaji, Pardis;Savaripour, Azim
    • Structural Monitoring and Maintenance
    • /
    • 제6권1호
    • /
    • pp.47-66
    • /
    • 2019
  • One method of retrofitting concrete structures is to use fiber reinforced polymers (FRP). In this research, the shear, torsional and flexural strengthening of self-compacting reinforced concrete (RC) girders are fulfilled with glass fiber reinforced polymer (GFRP) and carbon fiber reinforced polymer (CFRP) materials. At first, for verification, the experimental results were compared with numerical modeling results obtained from ABAQUS software version 6.10. Then the reinforcing sheets were attached to concrete girders in one and two layers. Studying numerical results obtained from ABAQUS software showed that the girders stiffness decreased with the propagations of cracks in them, and then the extra stresses were tolerated by adhesive layers and GFRP and CFRP sheets, which resulted in increasing the bearing capacity of the studied girders. In fact, shear, torsion and bending strengths of the girders increased by reinforcing girders with adding GFRP and CFRP sheets. The samples including two layers of CFRP had the maximum efficiencies that were 90, 76 and 60 percent of improvement in shear, torsion and bending strengths, respectively. It is worth noting that the bearing capacity of concrete girders with adding one layer of CFRP was slightly higher than the ones having two layers of GFRP in all circumstances; therefore, despite the lower initial cost of GFRP, using CFRP can be more economical in some conditions.

Fatigue Assessment Model of Corroded RC Beams Strengthened with Prestressed CFRP Sheets

  • Song, Li;Hou, Jian
    • International Journal of Concrete Structures and Materials
    • /
    • 제11권2호
    • /
    • pp.247-259
    • /
    • 2017
  • This paper presents a fatigue assessment model that was developed for corroded reinforced concrete (RC) beams strengthened using prestressed carbon fiber-reinforced polymer (CFRP) sheets. The proposed model considers the fatigue properties of the constituent materials as well as the section equilibrium. The model provides a rational approach that can be used to explicitly assess the failure mode, fatigue life, fatigue strength, stiffness, and post-fatigue ultimate capacity of corroded beams strengthened with prestressed CFRP. A parametric analysis demonstrated that the controlling factor for the fatigue behavior of the beams is the fatigue behavior of the corroded steel bars. Strengthening with one layer of non-prestressed CFRP sheets restored the fatigue behavior of beams with rebar at a low corrosion degree to the level of the uncorroded beams, while strengthening with 20- and 30%-prestressed CFRP sheets restored the fatigue behavior of the beams with medium and high corrosion degrees, respectively, to the values of the uncorroded beams. Under cyclic fatigue loading, the factors for the strengthening design of corroded RC beams fall in the order of stiffness, fatigue life, fatigue strength, and ultimate capacity.