• Title/Summary/Keyword: CFRP laminates

Search Result 165, Processing Time 0.018 seconds

A Study on the Inspection of Orthotropy Composite Laminate plates Using Ultrasonics (직교이방성 복합적층판의 초음파 탐사에 관한 연구)

  • 나승우;임광희;양인영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.583-586
    • /
    • 2000
  • This work ethibits how susceptive the shear ultrasonic waves are to a little misoriented plies according to the angle variation of shear ultrasoic waves $0^\circ$ , $45^\circ$ and $90^\circ$. Also, it is shown that shear waves, particularly the transmission mode with the transmitter and receiver perpendicular to each other, have high sensitivity for detecting anomalies in fiber orientation and ply layup sequence that may occur in the manufacturing of composite laminates. Experimental results are agreed with modeling solutions which were based on decomposition of shear wave polarization vector as it propagates through the composite laminates. This wave appeared considerably to be sensitive to CFRP composites to the thickness direction along in-plane fibers.

  • PDF

Fatigue Life Predication of Impacted Laminates Under Block Loading (블록하중을 받는 충격손상 적층복합재료의 피로수명 예측)

  • Kim, Jeong-Gyu;Gang, Gi-Won;Yu, Seung-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.7
    • /
    • pp.1089-1096
    • /
    • 2001
  • This paper presents the fatigue behavior of composite materials with impact-induced damage under 2 level block loading. For this purpose, the 2 level block loading fatigue tests were performed on the impacted composite laminate. The fatigue life of the laminate under the block loading is greatly influenced by the impact damage; the effect of impact damage can be characterized by the present impact damage parameter. Based on this parameter, the model is developed to predict the fatigue life under block loading and the results by this model agree well with experimental results regardless of applied impact energy. Also, stochastic model is established to describe the variation of cumulative damage behavior and fatigue life due to the material nonhomogeneity.

Collapse Characteristics of CFRP Hat Shaped members According to Variation of Interface Numbers under the Hygrothermal Environment (고온.고습 환경 하에서의 계면수 변화에 따른 CFRP모자형 단면 부재의 압궤특성)

  • Yang, Yong-Jun;Cha, Cheon-Seok;Yang, In-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.3
    • /
    • pp.241-247
    • /
    • 2009
  • It is important to satisfy the requirements and standards for the protections of passengers in a car accident. There are lots of studies on the crushing energy absorption of a structure members in automobiles. We have studied to investigate collapse characteristics and moisture absorption movements of CFRP(Carbon Fiber Reinforced Plastics) hat shaped sectional members when CFRP laminates are under the hygrothermal environment. In particular, the absorbed energy, mean collapse load and deformation mode were analyzed for side members which absorbed most of the collision energy. Variation of CFRP interlaminar numbers is important to increase the energy absorption capability. Therefore we have made a static collapse experiment to research into the difference of absorbed energy and deformation mode between moisture absorbed specimen and non-moisture absorbed.

  • PDF

A Study on the Drilling CFRP Composite laminates fabricated with Orientation Angle (CFRP 복합재료의 배열각에 따른 드릴가공에 관한 연구)

  • 정성택;박종남;조규재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.960-963
    • /
    • 2002
  • In recent days the more use of CFRP composite is in the airplane, automobile, and sport goods, etc., the more necessity of research on it in this engineering. In this research, the CFRP composite specimen are fabricated by 48 CFRP plies with 8 orientation angles, and the specimens are drilled with 3 tools. The results are analyzed with consideration of cutting force, type of tools and fabrication condition. The specimens with each drilling conditions are also investigated with SEM. The optimal drilling conditions such as drill types and cutting force with respect to the fabricating condition are studied.

  • PDF

The Influence of CNTs and Lamination Structure on the Intralaminar Fracture of CFRP/GFRP Composites (CFRP/GFRP 복합재료의 층내 파괴에 대한 CNT 및 적층구조의 영향)

  • Kim, Seong Hun;Yun, Yu Seong;Kang, Ji Woong;Kwon, Oh Heon
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.6
    • /
    • pp.9-15
    • /
    • 2017
  • Recently many researches were conducted on the interlaminar fracture that is a delamination between laminates by using ASTM standardized methods. However the experiment of the intralaminar a fracture is difficulty. In this study, four types of CFRP/GFRP composites with different layer structures were compared to evaluate an intralaminar fracture toughness under the mode I. Also the CNTs were added to the layer for the examination of the fracture toughness improvement. And the characteristics of the crack propagation behaviour was observed using a microscope. The obtained results can be useful for the evaluation of the intralaminar fracture toughness of the CNT reinforced CFRP/GFRP composites.

Evaluation of fracture toughness of dynamic interlaminar for CFRP laminate plates inserted interleaf (인터리브가 삽입된 CFRP 적층판의 인성평가)

  • 김지훈;강태식;한길영;김재열;심재기
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.4
    • /
    • pp.91-96
    • /
    • 2001
  • In this paper, an investigation was performed on the dynamic interlaminar fracture toughness of CFRP(carbon filber rein-forcement plastics). Specimens used in this experiments are CF/PEEK laminated plates. In this experiments, Split Hopkin-sons Bar(SHPE) tes was apply to dynamic and notched flexure test. The model II fracture toughness of each unidirectional CFRP was estimated by the analyzed deflection of the specimen and J-integral with the measured impulsive load and reac-tions at the supported points. As an experimental results the vibration amplitude of [$0^{\circ}_10 /F_4 0^{\circ}_10 $] j-aminates appear more than that of [$0^{\circ}_10 /F_2 0^{\circ}_10 $ laminates for the j-integral and displacement velocity at a measuring point. Also, it is thought that the dynamic fracture toughness of two kind specimen(CF/PEEK) with the crease of displacement velocity becomes great at a measuring point with in the range of measurement.

  • PDF

Characterization of Fiber Direction Influence in CFRP Composites Using Advanced NDE Techniques

  • Im, Kwang-Hee;Jang, Ju-Hwan;Back, Chong-Gui;Jeong, Ok-Su;Hsu, David K.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.6
    • /
    • pp.1003-1007
    • /
    • 2012
  • A nondestructive technique would be very useful. Advanced NDE T-ray (terahertz ray) techniques of technology and instrumentation has provided a probing field on the electromagnetic spectrum. However, the T-ray is limited in order to penetrate a conducting material to some degree. Here, the T-ray would not go through easily the CFRP composite laminates since carbon fibers are electrically conducting while the epoxy matrix is not. So, investigation of terahertz time domain spectroscopy (THz TDS) was made and reflection and transmission configurations were studied for a 48-ply thermoplastic PPS(poly-phenylene sulfide)-based CFRP solid laminate. It is found that the electrical conductivity of CFRP composites depends on the direction of unidirectional fibers.

Collapse Characteristics of CFRP Hat Shaped Members under the Hygrothermal Environment According to Stacking Angle (열습환경 하에서의 적층각도 변화에 따른 CFRP 모자형 단면부재의 압궤특성)

  • Yang, Yong-Jun;Yang, In-Young;Sim, Jae-Ki
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.5
    • /
    • pp.507-513
    • /
    • 2009
  • It is important to satisfy the requirements and standards for the protections of passengers in a car accident. There are lots of studies on the crushing energy absorption of structure members in automobiles. We have investigated collapse characteristics and moisture absorption movements of CFRP(Carbon Fiber Reinforced Plastics) hat shaped sectional members when CFRP laminates are under the hygrothermal environment. The absorbed energy, mean collapse load and deformation mode were analyzed for side members which absorbed most of the collision energy. Therefore we have made a static collapse experiment to research into the difference of absorbed energy and deformation mode between moisture absorbed specimen and non-moisture absorbed specimen.

  • PDF

Damage Assessment of Curved Composite Laminate Structures Subjected to Low-Velocity Impact (곡률을 가진 적층복합재 구조에서의 저속충격손상 평가)

  • 전정규;권오양;이우식
    • Composites Research
    • /
    • v.14 no.2
    • /
    • pp.22-32
    • /
    • 2001
  • Damage induced by low-velocity impact on the curved composite laminates was experimentally evaluated for CFRP cylindrical shells with the radius of curvatures of 50, 150, 300, and 500 mm. The result was then compared with that of flat laminates and with the results by nonlinear finite-element analysis. The radius of curvatures and the effective shell stiffness appeared to considerably affect the dynamic impact response of curved shells. Under the same impact energy level, the maximum contact force increased with the decreasing radius of curvatures, with reaching 1.5 times that for plates at the radius of curvature of 50 mm. Since the maximum contact farce is directly related to the impact damage, curved laminates can be more susceptible to delamination and less resistant to the low-velocity impact damage. Delamination was distributed rather evenly at each interface along the thickness direction of curved laminates on the contrary to the case of flat laminates, where delamination is typically concentrated at the interfaces away from the impact point. This implies that the effect of curvatures has to be considered for the design of a curved composite laminate.

  • PDF

Effect of the Hole on the Tensile Fatigue Properties of CFRP Laminates

  • Lee, Yeon-Soo;Ben, Goichi;Lee, Se-Hwan
    • Advanced Composite Materials
    • /
    • v.18 no.1
    • /
    • pp.43-59
    • /
    • 2009
  • The current study assessed the effect of a bolt hole on tensile fatigue properties of CFRP laminates. Two specimens, i.e. $[(0/90)_3]S$, $[(0/45/90/-45)_2]_S$, were analyzed using a finite element method and were experimentally tested for cases, both with and without a hole, whose diameter corresponded to 0.12 times the specimen width. Delamination positions predicted by a 3-dimensional static finite element analysis were matched well to those observed by an ultrasonic imaging system in the middle of fatigue test. A hole whose diameter corresponds to 0.12 times the specimen width caused the fatigue strength to decrease by 9% and 11% under 5 Hz loading frequency, and by 22% and 25% under 10 Hz loading frequency for $[(0/90)_3]_S$ and $[(0/45/90/-45)_2]_S$, respectively. Because the decrease in sectional area due to the hole was normalized in calculation of the tensile strength, a stress concentration around the hole is believed to induce the strength degradation of fatigue specimens. From the finite element analyses, the stress concentration factor around a hole was expected as 8.8 and 9.5 for $[(0/90)_3]_S$ and $[(0/45/90/-45)_2]_S$, respectively.