• Title/Summary/Keyword: CFRP laminate

Search Result 133, Processing Time 0.025 seconds

Fatigue Life Predication of Impacted Laminates Under Block Loading (블록하중을 받는 충격손상 적층복합재료의 피로수명 예측)

  • Kim, Jeong-Gyu;Gang, Gi-Won;Yu, Seung-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.7
    • /
    • pp.1089-1096
    • /
    • 2001
  • This paper presents the fatigue behavior of composite materials with impact-induced damage under 2 level block loading. For this purpose, the 2 level block loading fatigue tests were performed on the impacted composite laminate. The fatigue life of the laminate under the block loading is greatly influenced by the impact damage; the effect of impact damage can be characterized by the present impact damage parameter. Based on this parameter, the model is developed to predict the fatigue life under block loading and the results by this model agree well with experimental results regardless of applied impact energy. Also, stochastic model is established to describe the variation of cumulative damage behavior and fatigue life due to the material nonhomogeneity.

Recalculation Research of Material properties for CFRP FEM Non-linear Analysis (CFRP FEM 비선형 해석을 위한 물성치 재확립에 관한 연구)

  • Kim, Jung-Ho;Kim, Chi-Joong;Cha, Cheon-Seok;Kim, Ji-Hoon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.608-612
    • /
    • 2012
  • To reduce these costs and time by finite element analysis program has been much research (3~4). At virtual CAE program as like Abaques, Ansys, Ls-dyna and Nastran, the input data of material is got bellow coupon test. In case of carbon composite, it is also put in lamina/laminate properties. There have big problem. If you want to simulate FW(filament winding or wind blade) how do you input material data. Each area of FW is different stacking conditions. It's too hard that each area is tested for inputting lamina or laminate properties. The composite structure increasing load is applied occurred as the matrix dependence of the crack-induced nonlinearity and nonlinear mobility appears since the initial damage. And uni-direction for this research applies the theory to have been confined to. On this study, we are going to get basically fiber properties and matrix than carbon composite properties for simulating according stacking method by GENOA-MCQ. It is help to simulate easily composite material. Also Calculate the matrix nonlinear for simulating non-linear.

Penetration Characteristic of CFRP laminate shell by the curvature -A focus of fracture mode by the penetration- (곡률을 고려한 CFRP 복합재 적층쉘의 관통특성 -관통에 의한 파괴모드를 중심으로-)

  • 조영재;김영남;심재기;양인영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1434-1439
    • /
    • 2004
  • CFRP composite materials have wide application in structure materials of airplane, ships, and aero space vehicles because of their high strength and stiffness. This paper is to study the effects of curvature and orientation angle on the penetration characteristics of CFRP laminate shell. They are staked with 8 Ply specimens [0$_2$/90$_2$]$_{s}$, [0/90$_2$/0]$_{s}$ and the stacked of outer plates degree with 12 Ply specimens [0$_3$/90$_3$]$_{s}$, [0$_2$/90$_2$/0]$_{s}$ and [90$_3$/0$_3$], [90$_2$/0$_2$/90]S. They are manufactured to varied curvature radius (R=100,150,200mm and $\infty$). They are cured by heating to the appropriate harding temperature(13$0^{\circ}C$) by mean of a heater at the vaccum bag of the autoclave. Test specimens were prepared with dimensions 100mm$\times$140mm. When the specimen is subjected to transverse impact by a steel ball, the velocity of the steel ball was measured both before and after impact by determining the time for it to pass two ballistic-screen sensor located a known distance apart. In general, kinetic energy after impact-kinetic energy before impact rised in all specimens. This study observed a fracture mode inside the specimen after a penetration test using a digital camera and it examined a fracture mode and a penetration mode to stack of outer orientation angle and curvature.rvature.

  • PDF

Flexural behaviour of reinforced low-strength concrete beams strengthened with CFRP plates

  • Boukhezar, Mohcene;Samai, Mohamed Laid;Mesbah, Habib Abdelhak;Houari, Hacene
    • Structural Engineering and Mechanics
    • /
    • v.47 no.6
    • /
    • pp.819-838
    • /
    • 2013
  • This paper summarises the results of an experimental study to investigate the flexural behaviour of reinforced concrete beams strengthened using carbon-fibre reinforced polymer (CFRP) laminate in four-point bending. The experimental parameters included are the reinforcing bar ratio ${\rho}_s$ and preload level. Four bar ratios were selected (${\rho}_s=0.13$ to 0.86%), representing the section of two longitudinal tensile reinforcements, with diameters of 8, 14, 16, and 20 mm in order to reveal the effect of bar ratio on failure load and failure mode. Eight beams that could be considered "full-scale" in size, measuring 200 mm in width, 400 mm in total height and 2300 mm in length, were tested. Three beams were selected with different bar ratios (${\rho}_1$, ${\rho}_2$, ${\rho}_3$), and considered as control specimens (without ), while three other beams identical to the control beams with the same CFRP laminates ratio and a seventh beam with ${\rho}_{min}$ (the lowest bar ratio) were also used. In the second part of the study, two beams with the bar ratio ${\rho}_2$ were preloaded at two levels, 50 and 100% of their ultimate loads, and then repaired. This experimental investigation was consolidated using an analytical model. The experimental and analytical results indicate that the flexional capacity and stiffness of strengthened and repaired beams using CFRP laminate were increased compared to those of control beams, and the behaviour of repaired beams was nearly similar to the undamaged and strengthened beams; unlike the ductility of strengthened beams, which was greatly reduced compared to the control.

Anchorage efficiency of mold-type anchorage for CFRP plates (CFRP판 긴장재를 위한 부착형 정착장치의 정착성능)

  • Park, Jong-Sup;Park, Young-Hwan;Jung, Woo-Tai
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.169-172
    • /
    • 2008
  • Carbon fiber reinforced polymer (CFRP) laminates can be used more efficiently in strengthening applications by applying prestress to the CFRP laminates. A key problem for prestressing with CFRP laminates is anchoring the laminates. These may include fracture to the CFRP laminates due to excessive gripping force or slippage of the CFRP laminates out of the anchorage zone caused by low friction between the anchor device and the lamiantes. The main objective of this study is the development of an applicative mold-type anchorage system for prestressed CFRP laminates through experimental study. The experimental parameters were the type of anchorage detail and the effect of surface treatment. The test results showed that the developed anchor assures 100% CFRP laminate strength.

  • PDF

The Strain Evaluation of the Notch tip Area for the CFRP/GFRP Hybrid Laminate Plate using the SENT Specimen (SENT시험편을 이용한 CFRP/GFRP 하이브리드 적층재의 노치선단부 변형률 평가)

  • Kang, Ji Woong
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.5
    • /
    • pp.15-21
    • /
    • 2014
  • The aim of this work is conduct the study on light weight and structural performance improvement of the composite wind power blade. GFRP (Glass Fiber Reinforced Plastic) pre-empted by CFRP(Carbon Fiber Reinforced Plastic), the major material of wind power blade, was identified the superiority of mechanical performance through the tensile and fatigue test. SENT(Single Edge Notched Tension) specimen fracture test was conducted on the specimen that laminated together 2 ply CFRP with 4 ply GFRP through DIC(Digital Image Correlation) analysis. The SENT specimen thickness and $a_0/W$ ratio is 1.45 mm and 0.2, respectively. The fracture test accomplished with displacement control with 0.1 mm/min at the room temperature. The experimental apparatus used for the fracture test consisted of a 50kN universal dynamic tester and CCD camera connected to a personal computer (PC), which was used to record images of the specimen surface. Following data acquisition, the images and load-displacements were transferred to the PC, on which the DIC software was implement. The experiment and DIC analysis results show that CFRP/GFRP laminated composite exhibits improvement of the strength, compared with that of the existing blade material. This study shows the result that the strength of CFRP rotor blade of wind turbine satisfies through the experimental and DIC method.

Prediction of Residual Strength of CFRP Subjected to High Velocity Impact (고속충격을 받는 CFRP 복합재료의 잔류강도 예측)

  • 박근철;김문생
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.600-611
    • /
    • 1994
  • The purpose of this research is to propose a model for the prediction of residual strength. For this purpose, two-paremeter model based on Caprino's is developed and formulated by the ratio of indentation due to impact and normalized residual strength. The damage zone is considered only as an indentation. Impact tests are carried out on laminated composites by steel balls. Test material is carbon/epoxy laminate. The specimens are composed of $[{\pm}45^{\circ}/0^{\circ}/90^{\circ}]_2$ and $[\pm}45^{\circ}]_4$ stacking sequence and have $0.75^T{\times}0.26^W{\times}100^L(mm) dimension. A proposed model shows a good correlation with the experimental results And failure mechanism due to high impact velocity is discussed on CFRP laminates to examine the initiation and development of damage by fractography and ultrasonic image ststem. The effect of the unidirectional ply position on the residual strength is considered here.

The Evaluation of Interlaminar Fracture Toughness and AE Characteristics in a Plain Woven CFRP Composite with DCB Specimen (DCB 시험편의 평직 CFRP 복합재 층간파괴인성 및 AE 특성 평가)

  • Yun Yu-Seong;Kwon Oh-Heon
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.1 s.69
    • /
    • pp.49-54
    • /
    • 2005
  • Recently, many kinds of advanced composite materials have been used in various industry fields. Among them, fabric CFRP composites are being used as primary structural components in many applications because of their superior properties. However, the complexity of the fabric structure makes understanding of their failure behavior very difficult. The mechanical strength and crack propagation of plain woven carbon fiber fabric laminate composites are examined by acoustic emission(AE) method. AE signals are acquired during the tensile test and fracture tests. Thus, the relationship between AE signal and mechanical behavior curves and crack extension length are shown. Also the interlaminar fracture toughness in terms of AE characteristics are discussed in viewpoint of crack propagation behavior.

A Study on Characteristics of Impact Fracture in CFRP Laminate Plates (탄소섬유강화 복합재 적층판의 충격파괴 특성에 관한 연구)

  • Yang, I.Y.;Jung, J.A.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.5
    • /
    • pp.38-46
    • /
    • 1995
  • In this paper, an experimental study on the effects of the impact damage and the perforation characteristic of CFRP laminates with different fiber stacking orientation and ply number was done through an observation of interrelations between the impact energy vs. transmitted energy and the impact energy vs. absorbed energy per unit volume. The velocities of the ball before or after impact are measured by the high-speed camera. And when CFRP laminates are subjected to tranverse impact by a steel ball(${\phi}10$), the delamination shapes generated by impact damage are observed by using SAM (Scanning acoustic Microscope).

  • PDF