• Title/Summary/Keyword: CFRP (carbon fiber reinforced polymer)

Search Result 258, Processing Time 0.025 seconds

Corrosion of rebar in carbon fiber reinforced polymer bonded reinforced concrete

  • Bahekar, Prasad V.;Gadve, Sangeeta S.
    • Advances in concrete construction
    • /
    • v.8 no.4
    • /
    • pp.247-255
    • /
    • 2019
  • Several reinforced concrete structures that get deteriorated by rebar corrosion are retrofitted using Carbon Fiber Reinforced Polymer (CFRP). When rebar comes in direct contact with CFRP, rebar may corrode, as iron is more active than carbon. Progression of corrosion of rebar in strengthened RC structures has been carried out when rebar comes in direct contact with CFRP. The experimentation is carried out in two phases. In phase I, corrosion of bare steel bar is monitored by making its contact with CFRP. In phase II, concrete specimens with surface bonded CFRP were casted and subjected to the realistic exposure conditions keeping direct contact between rebar and CFRP. Progression of corrosion has been monitored by various parameters: Half-cell potential, Tafel extrapolation and Linear Polarisation Resistance. On termination of exposure, to find residual bond stress between rebar and concrete, pull-out test was performed. Rebar in contact with CFRP has shown substantially higher corrosion. The level of corrosion will be more with more area of contact.

Structural Performance of Reinforced Concrete Beams Exposed to Freeze-Thawing Environment After Strengthening in Shear with Carbon Fiber-Reinforced Polymer(CFRP) (탄소섬유 폴리머로 전단보강 후 동결융해 환경에 노출된 철근콘크리트 보의 구조성능)

  • Song, Seon-Hwa;Kim, Sun-Woo;Park, Wan-Shin;Choi, Ki-Bong;Yun, Hyun-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.6 s.58
    • /
    • pp.115-125
    • /
    • 2009
  • In these days, carbon fiber-reinforced polymers (CFRP) have been widely used for retrofitting and/or strengthening structural elements. However, there are not enough test data to predict the long-term performance of the retrofitted structures exposed to freeze-thawing cycles. This paper presents the results of experimental program undertaken to investigate the effects of freeze-thawing cycling (from-18 to $4^{\circ}C) on the behavior and failure characteristics of reinforced concrete (RC) beams strengthened in shear with CFRP sheet and plate using acoustic emission (AE) technique.

Basic Design of High-Speed Riverine Craft Made of Carbon Fiber Reinforced Polymer

  • Han, Zhiqiang;Choi, Jung-kyu;Hwang, Inhyuck;Kim, Jinyoung;Oh, Daekyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.4
    • /
    • pp.241-253
    • /
    • 2020
  • The Small-Unit Riverine Craft (SURC) is a small high-speed vessel used by navies and marine corps in relatively shallow waterway environments, such as riverine areas or littoral coasts. In the past, SURCs have primarily been rigid-hulled inflatable boats constructed using composite materials such as glass fiber reinforced plastics. More recently, single-hull SURCs have been manufactured using aluminum for weight reduction. In this study, a Carbon Fiber Reinforced Polymer (CFRP) material was applied instead to examine its feasibility in the basic design of an SURC with a hull length of 10 m. The CFRP structural design was obtained using the properties of a marine CFRP laminate, determined in a previous study. Next, the designed CFRP SURC was modeled to confirm its functionality, then compared with existing aluminum SURCs, indicating that the CFRP SURC was 41.49 % lighter, reduced fuel consumption by 30 %, and could sail 50 NM further for every hour of engine operation. A method for reducing the high cost of carbon fiber was also proposed based on the adjustment of the carbon fiber content to provide the optimum strength where required. The data developed in this study can be used as a basis for further design of CFRP craft.

3-Axis Milling Algorithm Development for Carbon Fiber Reinforced Polymer (CFRP) Composites (탄소섬유복합재 3축 밀링 알고리즘 개발)

  • Luo, Shan;Bayesteh, Reza;Dong, Zuomin;Jun, Martin B.G.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.6
    • /
    • pp.447-452
    • /
    • 2016
  • The simulation of Carbon fiber reinforced polymer (CFRP) machining facilitates the selection of optimal cutting parameter for high machining efficiency and better surface quality. In this study, This paper proposes a dual-dexel model to represent the fiber laminate with computational geometry method to calculate the fiber length removed per revolution and fiber cutting angles. A flat end milling simulation software is developed in C# to simulate and display the CFRP milling process. During simulation, fiber lengths, fiber cutting angle and engaged cutting angle can be displayed in real-time. A CFRP plate with different angles in different layer is used to compare the simulation results.

The Flexural Strengthening Effect of I-Shape PFRP Member Using Carbon Fiber Sheet (탄소섬유시트를 이용한 I형 PFRP 부재의 휨보강 효과)

  • Lee, Young-Geun;Kim, Sun-Hee;Lee, Kang-Yeon;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.2
    • /
    • pp.1-7
    • /
    • 2013
  • In recent years, fiber reinforced polymer plastic composites are readily available in the construction industry. Fiber reinforced polymer composite has many advantages such as high specific strength and high specific stiffness, high corrosion resistance, light-weight, magnetic transparency, etc. In this paper, we present the result of investigation pertaining to the flexural behavior of flange strengthened I-shape pultruded fiber reinforced polymer plastic (PFRP) member using carbon fiber sheet (CFRP sheet). Test variable is consisted of the number of layers of strengthening CFRP sheet from 0 to 3. From the experimental results, flexural strengthening effect of flange strengthened I-shape PFRP member using CFRP sheet is evaluated and it was found that 2 layers of strengthening CFRP sheet are appropriate considering efficiency and workability.

Acoustic Emission Characteristics of RC Beams retrofitted by Carbon Fiber Reinforced Polymer (CFRP 보강겹수에 따른 천근콘크리트보의 음향방출특성)

  • Jeon, Su-Man;Kim, Sun-Woo;Yun, Hyun-Do;Seo, Soo-Yeon;Choi, Chang-Sik;Choi, Ki-Bong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.338-341
    • /
    • 2006
  • In recent years, carbon fiber reinforced polymer(CFRP) has been widely used for reinforcement of damaged concrete structures. However, the fundamental mechanisms of load transfer and load-resistance for reinforced concrete beams retrofitted by CFRP are not fully understood. Acoustic emission(AE) technique was used to evaluate the characteristics of damage progress and the failure mechanism of reinforced concrete beams retrofitted by CFRP. In this study, three-paint-bending test has been carried out to investigate the AE characteristics of four specimens. The results show that the AE technique is a valuable tool to study the failure mechanism of reinforced concrete beams retrofitted by CFRP.

  • PDF

Behavior of CFRP strengthened RC multicell box girders under torsion

  • Majeed, Abeer A.;Allawi, Abbas A.;Chai, Kian H.;Badaruzzam, Hameedon W. Wan
    • Structural Engineering and Mechanics
    • /
    • v.61 no.3
    • /
    • pp.397-406
    • /
    • 2017
  • The use of fiber reinforced polymer (FRP) for torsional strengthening of reinforced concrete (RC) single cell box beams has been analyzed considerably by researchers worldwide. However, little attention has been paid to torsional strengthening of multicell box girders in terms of both experimental and numerical research. This paper reports the experimental work in an overall investigation for torsional strengthening of multicell box section RC girders with externally-bonded Carbon Fiber Reinforced Polymer CFRP strips. Numerical work was carried out using non-linear finite element modeling (FEM). Good agreement in terms of torque-twist behavior, steel and CFRP reinforcement responses, and crack patterns was achieved. The unique failure modes of all the specimens were modeled correctly as well.

Post-heating behavior of concrete beams reinforced with fiber reinforced polymer bars

  • Irshidat, Mohammad R.;Haddad, Rami H.;Almahmoud, Hanadi
    • Structural Engineering and Mechanics
    • /
    • v.53 no.6
    • /
    • pp.1253-1269
    • /
    • 2015
  • The present paper investigates the post heating behavior of concrete beams reinforced with fiber reinforced polymer (FRP) bars, namely carbon fiber reinforced polymer (CFRP) bars and glass fiber reinforced polymer (GFRP) bars. Thirty rectangular concrete beams were prepared and cured for 28 days. Then, beams were either subjected (in duplicates) to elevated temperatures in the range (100 to $500^{\circ}C$) or left at room temperature before tested under four point loading for flexural response. Experimental results showed that beams, reinforced with CFRP and GFRP bars and subjected to temperatures below $300^{\circ}C$, showed better mechanical performance than that of corresponding ones with conventional reinforcing steel bars. The results also revealed that ultimate load capacity and stiffness pertaining to beams with FRP reinforcement decreased, yet their ultimate deflection and toughness increased with higher temperatures. All beams reinforced with FRP materials, except those post-heated to $500^{\circ}C$, failed by concrete crushing followed by tension failure of FRP bars.

Finite element analysis of carbon fiber-reinforced polymer (CFRP) strengthened reinforced concrete beams

  • Kim, SangHun;Aboutaha, Riyad S.
    • Computers and Concrete
    • /
    • v.1 no.4
    • /
    • pp.401-416
    • /
    • 2004
  • This paper presents investigation of a three-dimensional (3-D) nonlinear finite element model analysis to examine the behavior of reinforced concrete beams strengthened with Carbon Fiber Reinforced Polymer (CFRP) composites to enhance the flexural capacity and ductility of the beams. Three-dimensional nonlinear finite element models were developed between the internal reinforcement and concrete using a smeared relationship. In addition, bond models between the concrete surface and CFRP composite were developed using a smeared bond for general analyses and a contact bond for sensitivity analyses. The results of the FEA were compared with the experimental data on full-scale members. The results of two finite-element bonding models showed good agreement with those of the experimental tests.

Behavior Characteristics of Reinforced Concrete Beam Strengthened with Carbon Fiber Reinforced Polymer Plate (CFRP로 보강된 철근콘크리트 보의 거동 특성)

  • Park, Jung-Yeol;Hwang, Seon-Il;Cho, Hong-Dong;Han, Sang-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.3
    • /
    • pp.125-131
    • /
    • 2003
  • This paper presents the characteristics of flexural behavior of RC beam strengthened with CFRP(Carbon Fiber Reinforced Polymer Plate). Experimental variables included the strengthening length, width, reinforcement ratio, end anchorage and preloading corresponding to 75 percent of ultimate capacity and the effects according to each experimental variables were analyzed. To study, a total 21 RC beams were constructed, tested and the response of the beams in terms of ultimate load, deflection, strain of CFRP, failure mode were examined.