• 제목/요약/키워드: CFRP/GFRP composites

검색결과 41건 처리시간 0.02초

MMB시험에 의한 평직 CFRP/GFRP 적층판 혼합모드 층간분리의 실험적 평가 (The Experimental Evaluation of the Mixed Mode Delamination in Woven CFRP/GFRP Laminates under MMB Test)

  • 곽정훈;강지웅;권오헌
    • 한국안전학회지
    • /
    • 제28권4호
    • /
    • pp.14-18
    • /
    • 2013
  • Blades of horizontal axis are nowadays made of composite materials. Generally, composite materials satisfy design provides lower weight and good stiffness, while laminate composites have often damages as like the delamination and cracks at the interface of laminates. The box spar and tail parts of a blade are composed of the CFRP/GFRP hybrid laminate composites. However, delamination and the interfacial crack often occur in the interface of CFRP/GFRP hybrid laminate composites under the mixed mode fracture condition, especially mode I and mode II. Therefore, there is a need for the evaluation of the mixed mode fracture behavior during the delamination of CFRP/GFRP hybrid laminates. This study shows the experimental results for the delamination fracture toughness in CFRP/GFRP hybrid laminate composites. Fracture toughness experiments and estimation are performed by using DMMB(Dissimilar mixed mode bending) specimen. The materials used in the test are a commercial woven type CFRP(Carbon fiber reinforced plastic) prepreg(CF3327) and UD type GFRP(Glass fiber reinforced plastic) prepreg(HD224A). A CFRP/GFRP hybrid laminate composite is composed by the 10 plies CFRP and GFRP prepreg for DMMB. A thickness of CFRP and GFRP layer is 2.5mm and 3.0mm, respectively. Also the fulcrum location which is a loading parameter is changed from 80 to 100mm on the specimen of length 120mm because it defines the ratio of mode I to mode II. In this study, the effects of the fulcrum location are evaluated in the viewpoint of energy release rate in mode I and mode II contribution. The results show that the delamination crack initiates at higher displacement and lower load according to the increase of the fulcrum location ratio. And the variation of the energy release rate for mode I and II contributions for the mode mixity are shown.

CFRP/GFRP 복합재료의 층내 파괴에 대한 CNT 및 적층구조의 영향 (The Influence of CNTs and Lamination Structure on the Intralaminar Fracture of CFRP/GFRP Composites)

  • 김성훈;윤유성;강지웅;권오헌
    • 한국안전학회지
    • /
    • 제32권6호
    • /
    • pp.9-15
    • /
    • 2017
  • Recently many researches were conducted on the interlaminar fracture that is a delamination between laminates by using ASTM standardized methods. However the experiment of the intralaminar a fracture is difficulty. In this study, four types of CFRP/GFRP composites with different layer structures were compared to evaluate an intralaminar fracture toughness under the mode I. Also the CNTs were added to the layer for the examination of the fracture toughness improvement. And the characteristics of the crack propagation behaviour was observed using a microscope. The obtained results can be useful for the evaluation of the intralaminar fracture toughness of the CNT reinforced CFRP/GFRP composites.

Flexural strengthening of RC Beams with low-strength concrete using GFRP and CFRP

  • Saribiyik, Ali;Caglar, Naci
    • Structural Engineering and Mechanics
    • /
    • 제58권5호
    • /
    • pp.825-845
    • /
    • 2016
  • The Turkish Earthquake Code was revised in 1998 and 2007. Before these Codes, especially 1998, reinforced concrete (RC) beams with low flexural and shear strength were widely used in the building. In this study, the RC specimens have been produced by taking into consideration the RC beams with insufficient shear and tensile reinforcement having been manufactured with the use of concrete with low strength. The performance of the RC specimens strengthened with different wrapping methods by using of Carbon Fibre Reinforced Polymer (CFRP) and Glass Fibre Reinforced Polymer (GFRP) composites have been examined in terms of flexural strength, ductility and energy absorption capacity. In the strengthening of the RC elements, the use of GFRP composites instead of CFRP composites has also been examined. For this purpose, the experimental results of the RC specimens strengthened by wrapping with CFRP and GFRP are presented and discussed. It has been concluded that although the flexural and shear strengths of the RC beams strengthened with GFRP composites are lower than those of beams reinforced with CFRP, their ductility and energy absorption capacities are very high. Moreover, the RC beams strengthened with CFRP fracture are more brittle when compared to GFRP.

Flexural strengthening of RCC beams using FRPs and ferrocement - a comparative study

  • Ganesan, N.;Bindurania, P.;Indira, P.V.
    • Advances in concrete construction
    • /
    • 제10권1호
    • /
    • pp.35-48
    • /
    • 2020
  • This paper deals with a comparative study among three different rehabilitation techniques, namely, (i) carbon fibre reinforced polymer (CFRP), (ii) glass fibre reinforced polymer (GFRP) and (iii) ferrocement on the flexural strengthening of reinforced cement concrete (RCC) beams. As these different techniques have to be compared on a level playing field, tensile coupon tests have been carried out initially for GFRP, CFRP and ferrocement and the number of layers required in each of these composites in terms of the tensile strength. It was found that for the selected constituents of the composites, one layer of CFRP was equivalent to three layers of GFRP and five layers of wiremesh reinforcement in ferrocement. Rehabilitation of RCC beams using these equivalent laminates shows that all the three composites performed in a similar way and are comparable. The parameters selected in this study were (i) the strengthening material and (ii) the level of pre-distress induced to the beams prior to the rehabilitation. It was noticed that, as the levels of pre-distress decreases, the percentage attainment of flexural capacity and flexural stiffness of the rehabilitated beams increases for all the three selected composites used for rehabilitation. Load-deflection behavior, failure modes, energy absorption capacity, displacement ductility and curvature ductility were compared among these composites and at different distress levels for each composite. The results indicate that ferrocement showed a better performance in terms of ductility than other FRPs, and between the FRPs, GFRP exhibited a better ductility than the CFRP counterpart.

필라멘트 와인딩 복합적층재의 환경가속 노화시험 평가 (Degradation Characteristics of Filament-Winding-Laminated Composites Under Accelerated Environmental Test)

  • 김덕재;윤영주;최낙삼
    • 대한기계학회논문집A
    • /
    • 제31권3호
    • /
    • pp.295-303
    • /
    • 2007
  • Degradation behaviors of filament-winded composites have been evaluated under the accelerated environmental test of high temperature, water immersion and thermal impact conditions. Two kinds of laminated composites coated by an urethane resin have been used: carbon-fiber reinforced epoxy(T700/Epon-826, CFRP) and glass-fiber reinforced phenolic (E-glass/phenolic, GFRP). For tensile strength of $0^{\circ}$ composites, CFRP showed little degradation while GFRP did high reduction by 25% under the influence of high temperature and water However for water-immersed $90^{\circ}$ composites tensile strength of both CFRP and GFRP showed high reduction. Bending strength and modulus of $90^{\circ}$ composites were largely reduced in water-immersion as well as high temperature environment. Urethane coating on the composite surface improved the bending properties by 20%, however hardly showed such improvement for water-immersed $90^{\circ}$ composites. In case of shear strength and modulus, both CFRP and GFRP showed high reduction by water-Immersion test but did a slight increase by high temperature and thermal impact conditions.

Effect of FRP parameters in strengthening the tubular joint for offshore structures

  • Prashob, P.S.;Shashikala, A.P.;Somasundaran, T.P.
    • Ocean Systems Engineering
    • /
    • 제8권4호
    • /
    • pp.409-426
    • /
    • 2018
  • This paper presents the strengthening of tubular joint by wrapping Carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP). In this study, total number of layers, stacking sequence and length of wrapping are the different parameters involved when fiber reinforced polymers (FRP) composites are used for strengthening. For this, parameters where varied and results were compared with the reference joint. The best stacking sequence was identified which has the highest value in ultimate load with lesser deflections. For determining the best stacking sequence, numerical investigation was performed on CFRP composites; length of wrapping and number of layers were fixed. Later, the studies were focused on CFRP and GFRP strengthened joint by varying the total number of layers and length of wrapping. An attempt was done to propose a parametric equation from multiple regression analysis, which can be used for CFRP strengthened joints. Hashin failure criteria was used to check the failure of composites. Results revealed that FRP was having a greater influence in the load bearing capacity of joints, and in reducing the deflections and stresses of joint under axial compressive loads. It was also seen that, CFRP was far better than GFRP in reducing the stresses and deflection.

필라멘트 와인딩 복합재의 환경노화에 따른 기계적물성 평가 (Behaviors of Mechanical Properties of Filament-Winding-Laminated Composites due to Environmental Aging)

  • 최낙삼;윤영주;이상우;김덕재
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2006년도 제26회 춘계학술대회논문집
    • /
    • pp.31-35
    • /
    • 2006
  • Degradation characteristics of filament-winded composites due to accelerated environmental aging have been evaluated under high temperature, water immersion and thermal impact conditions. Two kinds of laminated composites coated by an urethane resin have been used: carbon-fiber reinforced epoxy(T700/Epon-826, CFRP) and glass-fiber reinforced phenolic (E-glass/phenolic, GFRP). For tensile strength of $0^{\circ}$ composites, CFRP did high reduction by 25% under the influence of high temperature and water while CFRP showed little degradation. However for water-immersed $90^{\circ}$ composites both CFRP and GFRP showed high reduction in tensile strength. Bending strength and modulus of $90^{\circ}$ composites were largely reduced in water-immersion as well as high temperature environment. Urethane coating on the composite surface improved the bending properties by 20%, however hardly showed such improvement for water-immersed $90^{\circ}$ composites.

  • PDF

능직 CFRP/GFRP 적층하이브리드 복합재의 Mode I 파괴인성 평가 (The Evaluation of Fracture Toughness on Mode I for Twill CFRP/GFRP Laminated Hybrid Composites)

  • 노영우;강지웅
    • 한국안전학회지
    • /
    • 제35권5호
    • /
    • pp.9-14
    • /
    • 2020
  • In order to realize high strength and light weight for various industrial facilities and structural materials, various new materials are applied to product design. Among them, CFRP has excellent specific strength and non-rigidity, and the scope of use is expanding throughout the industry, such as mobility products and building materials. GFRP is cheaper than CFRP, and has excellent specific strength and non-rigidity, and has excellent heat resistance and sound insulation, so it has been adopted as a core material for flooring and interior flooring. CFRP of twill weave structure has better resistance to deformation of fiber than plain weave structure, so the outermost layer is applied as twill weave structure in product design. After fabrication with DCB specimens, Mode I fracture toughness was evaluated according to the crack length. As the crack length increases, the energy release rate and stress intensity factor values tended to decrease overall.

일본내 연구동향 (6편중 제3편) (Some Research Topics of Ben′s Laboratory at Nihon University in Japan)

  • Ben, Goichi
    • Composites Research
    • /
    • 제15권2호
    • /
    • pp.48-54
    • /
    • 2002
  • This paper presents some research topics for advanced composites which have been conducted in Ben laboratory, College of industrial Technology, Nihon University. The topics are applications of shape memory alloy(SMA) to composite structures, dynamic responses of CFRP and GFRP structures, fabrication of new type of GFRP, fatigue and weatherability strength of CFRP and new concept of joint for FRP structures, respectively.

SQP법을 사용한 복합재 조류력 발전용 블레이드의 스파 캡에 대한 두께 최적화 (Thickness Optimization for Spar Cap of Composite Tidal Current Turbine Blade using SQP Method)

  • 차명찬;김상우;정민수;이인;유승재;박천진
    • Composites Research
    • /
    • 제26권4호
    • /
    • pp.207-212
    • /
    • 2013
  • 본 연구에서는 유리강화섬유폴리머(GFRP)와 탄소강화섬유폴리머(CFRP)로 적층된 조류력 블레이드의 스파 캡(Spar cap)을 대상으로 끝단 처짐의 제한에 따른 단방향(UD) GFRP의 적층 두께를 최적화 하였다. 또한 도출된 적층 두께에 따른 블레이드 내부의 응력의 변화와 블레이드의 재료비용을 확인하였다. 비선형 최적화에 뛰어난 순차 이차방정식 프로그래밍(SQP) 알고리즘을 사용하였고, 목적함수를 계산하기 위하여 상용 유한요소해석 프로그램인 Abaqus/Standard와 연계하였다. UD CFRP의 적층 두께가 9 mm로 제한된 경우, 끝단 처짐이 감소함에 따라 UD GFRP의 적층 두께가 증가하였다. 즉, 최적화된 스파 캡의 무게는 최대 96.2% 증가였으며 최대 인장응력은 최대 24.6% 감소하였다. 끝단 처짐이 126.83 mm로 제한된 경우, UD CFRP의 적층 두께가 줄어듦에 따라 UD GFRP의 적층 두께가 증가하였다. 이로 인하여 무게는 최대 40.1% 증가하였지만 재료비용은 최대 16.97% 감소하였다. 본 연구에서 제시한 블레이드 스파 캡의 최적화된 두께를 바탕으로 조류력 블레이드의 무게, 내부의 최대 응력과 재료비용의 상관관계를 제시하였다.