• Title/Summary/Keyword: CFRC(carbon fiber reinforced carbon)

Search Result 18, Processing Time 0.021 seconds

Fabrication and Characteristics of CFRC(Carbon Firber Reinforced Carbon Composites) Fabricated with Carbon Fiber and Coal Tar Pitch Matrix (석탄계 핏치를 결합재로한 탄소/탄소 복합재의 제조 및 특징)

  • Ju, Hyeok-Jong;Choe, Don-Muk;O, In-Seok
    • Korean Journal of Materials Research
    • /
    • v.4 no.2
    • /
    • pp.194-205
    • /
    • 1994
  • In this research, we attempt to fabricate an excellent CFRC(Carbon Fiber Reinforced Carbon), which has good thermal and mechanical properties, with 8H/satin woven fabric prepreg, high modulus and high strength type continuous carbon fiber and raw coal tar pitch(RCTP) matrix or THF soluble fraction(THFSP) matrix which has good graphitizability. Green bodies were fabricated with hot press molding technique and CFRC samples were made after carbonization, impregnation, recarbonization and graphitization steps. For the purpose of characterization of the physical properties, SEM, polarized light microscope, TGA were observed, and tested flexural strength, modulus and ILSS. After heat treating the THFSP matrix up to $2300^{\circ}C$, the value of $C_0$/2 was 3.380$\AA$, which is analogous to the structure of natural graphite and the value of 2$\theta$ is $26.276^{\circ}$ approached to the Bragg's angle of natural graphite. As a result of TGA to test the high temperature air oxidation, the THFSP matrix, graphitized up to $2300^{\circ}C$, exhibited the best air oxidation resistance. And mechanical properties were increased up to 65~70% as fiber volume fraction increased. Because of the good orientation graphitizability, the fracture surface of THFSP matrix CFRC is very good.

  • PDF

An Experimental Study on the Freeze-Thaw Durability and Mechanical Properties by the fiber types of Fiber Reinforced Cement Composites (섬유보강 시멘트 복합체의 동결융해 저항성 및 섬유형태별 역학적 특성에 관한 연구)

  • 박승범;윤의식;송용순
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.10a
    • /
    • pp.145-150
    • /
    • 1990
  • In order to discuss the freeze-thaw durability of FRC and mechanical properties by the fiber types of FRC, experimental studies of FRC were carried out. The kinds of fiber used which are in CFRC are PAN-based and Pitch-based carbon fiber and in GFRC are alkali-resistance glass fiber. To examine the effects of the kinds, types (continuous fiber and Tow, Belt, Cloth) and contents of fiber and matrices, the following three methods CFRC and GFRC, Air cured, Water cured and Autoclaved CFRC and GFRC were tested. According to the test results, the flexural, tensile strength and toughness of FRC were remarkably influenced by types of fiber and addition of condensed silica fume. Also, freeze-thaw resistance of FRC was considerably improved in comparision to conventional mortar.

  • PDF

The Mechanical Properties of CFRC under High Temperature (CFRC 복합재료의 기계적 고온특성)

  • Song, Gwan-Hyeong
    • Korean Journal of Materials Research
    • /
    • v.11 no.4
    • /
    • pp.258-265
    • /
    • 2001
  • Compression and bending test have been conducted to evaluate the mechanical performance of CFRC at several different temperature up to $2000^{\circ}C$ . Tools and several grips for the test at high temperature were designed to obtain mechanical properties of CFRP. A major cause of increasing strength according to increasing the density and the temperature were analyzed. SEM method was utilized to find out the damage and the fracture mechanism. The new simple equation for the L(span length)/h(beam height) of specimens and for the failure criterion on the 4 point bending were proposed.

  • PDF

A Study on the Mechanical Properties of Floor Slab structures Using Fiber Reinforced Cement Composites (섬유보강 시멘트 복합체를 이용한 상판구조의 역학적 특성에 관한 연구)

  • 박승범;윤의식;차종훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.343-349
    • /
    • 1994
  • The purpose of this study is to investigate the mechanical properties of floor slab structures with high-strength and lightweight CFRC panel using fly ash, PAN-derived and Pitch-derived carbon fiber. As a result, the flexural strength of CFRC is remarkably increased by CF contents, but compressive strength of the CFRC is not so increased as flexural strength. The bulk specific gravity is influenced by FA contents more than by CF contents, The compressive strength and the flexural strength are increased by FA contests, but decreased the case of 30% of contents. In order to increasing the flexural-carrying capacity of floor slab structures, it is recommended that the shape of anchor for reinforcement is required type-C and the spacing of anchor is required below 60mm.

  • PDF

Electrodeposition onto the Surface of Carbon Fiber and Its Application to Composites (II) - CFRC with MVEMA and EMA Interphase - (탄소섬유 표면에의 고분자 전착과 복합재료 물성 (II) - MVEMA 및 EMA 계면상을 갖는 탄소섬유 복합재료 -)

  • Kim, Minyoung;Kim, Jihong;Bae, Jongwoo;Kim, Wonho;Hwang, Byungsun;Choi, Youngsun
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.336-342
    • /
    • 1999
  • Various surface treatment techniques can be applied onto the surface of carbon fibers to increase interlaminar shear strength (ILSS). In a commerciaI treatment, first, surface of carbon fiber was oxidized, after that, a sizing agent was coated to improve handleability and adhesion to the matrix. Carbon fiber reinforced composites (CFRC) which is made of these fibers show excellent ILSS but show low vaIues of impact strength In this study, reactive and ductile interphase was introduced between fiber and matrix to increase both the ILSS and impact strength. By using electric conductivity of carbon fibers, flexible polymers which have ionizable group, i.e., MVEMA and EMA, were coated onto the surface (oxidized) of carbon fiber by the technique of electrodeposition. ILSS and impact strength of composites were evaluated according to the surface treatments, i.e., commercial sizing treatment, interphase introduction, and without sizing treatment. Izod impact strength and ILSS of CFRC were simultaneously improved in thc thickness range of $0.08{\sim}0.12{\mu}m$ of MVEMA interphase. Water resistance of the composites was decreased by introducing MVEMA interphase.

  • PDF

Evaluation of Adhesion and Electrical Properties of CNT/PU Topcoat with Different CNT Weight Fraction for Aircraft (탄소나노튜브의 함량에 따른 항공기용 탄소나노튜브/폴리우레탄 탑코트의 접착 및 전기적 특성 평가)

  • Kim, Jong-Hyun;Shin, Pyeong-Su;Kim, So-Yeon;Park, Joung-Man
    • Composites Research
    • /
    • v.33 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • Dispersion and electrical resistance (ER) properties of polyurethane (PU) type topcoat were evaluated using carbon nanotube (CNT) with different CNT weight fraction. CNT was dispersed in PU type topcoat using ultra sonication dispersion method. CNT/PU topcoat was coated on carbon fiber reinforced epoxy composite (CFRC) surface using gravity feed spraying method. Static contact angles of CFRC and CNT/PU topcoat were performed using 4 types of solvents to calculate the work of adhesion between CNT/PU topcoat and CFRC surface. Surface resistance of CNT added PU topcoat was measured to determine CNT dispersion. Adhesion property between CNT/PU topcoat and CFRC was determined via cross hatch cutting test based on ASTM D3359. The optimized condition of CNT weight fraction was found.

Efficient influence of cross section shape on the mechanical and economic properties of concrete canvas and CFRP reinforced columns management using metaheuristic optimization algorithms

  • Ge, Genwang;Liu, Yingzi;Al-Tamimi, Haneen M.;Pourrostam, Towhid;Zhang, Xian;Ali, H. Elhosiny;Jan, Amin;Salameh, Anas A.
    • Computers and Concrete
    • /
    • v.29 no.6
    • /
    • pp.375-391
    • /
    • 2022
  • This paper examined the impact of the cross-sectional structure on the structural results under different loading conditions of reinforced concrete (RC) members' management limited in Carbon Fiber Reinforced Polymers (CFRP). The mechanical properties of CFRC was investigated, then, totally 32 samples were examined. Test parameters included the cross-sectional shape as square, rectangular and circular with two various aspect rates and loading statues. The loading involved concentrated loading, eccentric loading with a ratio of 0.46 to 0.6 and pure bending. The results of the test revealed that the CFRP increased ductility and load during concentrated processing. A cross sectional shape from 23 to 44 percent was increased in load capacity and from 250 to 350 percent increase in axial deformation in rectangular and circular sections respectively, affecting greatly the accomplishment of load capacity and ductility of the concentrated members. Two Artificial Intelligence Models as Extreme Learning Machine (ELM) and Particle Swarm Optimization (PSO) were used to estimating the tensile and flexural strength of specimen. On the basis of the performance from RMSE and RSQR, C-Shape CFRC was greater tensile and flexural strength than any other FRP composite design. Because of the mechanical anchorage into the matrix, C-shaped CFRCC was noted to have greater fiber-matrix interfacial adhesive strength. However, with the increase of the aspect ratio and fiber volume fraction, the compressive strength of CFRCC was reduced. This possibly was due to the fact that during the blending of each fiber, the volume of air input was increased. In addition, by adding silica fumed to composites, the tensile and flexural strength of CFRCC is greatly improved.

Electrodeposition onto the Surface of Carbon Fiber and its Application to Composites(I) - Electrodeposition of MVEMA and EMA (탄소섬유 표면에의 고분자 전착과 복합재료 물성(I) - MVEMA와 EMA의 전착 -)

  • Kim, Minyoung;Kim, Jihong;Kim, Wonho;Kim, Booung;Hwang, Byungsun;Choi, Youngsun
    • Applied Chemistry for Engineering
    • /
    • v.9 no.6
    • /
    • pp.894-900
    • /
    • 1998
  • An interphase between carbon fiber and epoxy matrix was introduced to increase impact strength of carbon fiber reinforced composites (CFRC) without sacrificing the interlaminar shear strength. Flexible polymers, I. e., MVEMA (poly(methyl vinyl ether-co-maleic anhydride)) and EMA(poly(ethylene-co-maleic anhydride)), which have reactive functional groups were considered as interphase materials. Weight hain of MVEMA and EMA onto the surface of carbon fibers was evaluated by changing the parameters of electrodeposition process. Electrodeposition mechanism of polymers which have anhydride functional group was identified by IR spectroscopy, that is, the generation of $RCOO^-$ functional group by the attack of hydroxide anion in the basic solution was observed. The weight gain was increased by increasing concentration of polymers, current density, and electrodeposition time. However the excess generation of oxygen gas decreased the weight gain by removing the deposited polymers. Washing in the running water easily removed the deposited polymers which are on the fiber surface without bonding, as a results, only 0.5 wt% of deposited polymers are remained.

  • PDF