• 제목/요약/키워드: CFD system

검색결과 1,611건 처리시간 0.028초

천정형 에어컨 온도센서의 최적 위치 결정을 위한 교실의 CFD 열환경 분석 (Thermal Environment Analysis of a Classroom by CFD Simulation to Determine Optimal Temperature Sensor Position in Ceiling Type Air-Conditioning System)

  • 이미화;김동규;금종수;정석권
    • 동력기계공학회지
    • /
    • 제10권4호
    • /
    • pp.43-49
    • /
    • 2006
  • Nowadays, the thermal environments of classrooms are usually adjusted by the ceiling type air-conditioning system with a temperature sensor installed on inlet of an air-conditioner. However, it is not clear that the conventional temperature sensor position is proper to satisfy both thermal comport and energy saving in summer especially. Therefore, this study is aimed at finding out the best position of the temperature sensor on the purpose of the comfort thermal environment and energy saving. The different 5 positions for the temperature sensor are supposed in this paper to analyze thermal environment by CFD. From the analysis through the CFD simulations, the best position of the temperature sensor satisfying for both comfort thermal environment and energy saving is obtained.

  • PDF

CFD-ACE+를 이용한 ICP-nitriding system의 수치 모델링 (Numerical modeling of ICP-nitriding system using CFD-ACE+)

  • 주정훈
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.268-268
    • /
    • 2009
  • 고밀도 유도 결합 플라즈마를 이용한 연료 전기 분리판용 질화 장치를 플라즈마를 모사할 수 있는 3차원 전산 유체 역학 프로그램인 CFD-ACE+를 이용하여 해석하였따. 내장형 안테나 타입의 유도 결합 플라즈마의 전자 온도, 밀도 균일성, 가스 유동, 얇은 기판이 촘촘히 적재 되었을 경우의 플라즈마 특성을 모사하였다.

  • PDF

CFD를 활용한 연료전지 모듈 보호가스 유동 연구 (CFD-based Flow Simulation Study of Fuel Cell Protective Gas)

  • 권기욱;임종구;박종철;신현길
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.86.1-86.1
    • /
    • 2011
  • To improve the safety, the fuel cell operate inside a pressurized enclosure which contains inert gas so called protective gas. The protective gas not only prevents the mixture of hydrogen and oxygen, but also removes the water in the vessel with the condenser. This study presents the details of the flow optimization in order to reduce the humidity in the fuel cell housing. The protective gas flow in the fuel cell container is studied by Computational Fluid Dynamics(CFD) simulations. This study focuses on optimizing the geometry of an protective gas circulation system in fuel cell module to reduce the humidity in the vessel. CFD analysis was carried out for an existing model to understand the flow behavior through the fuel cell system. Based on existing model CFD results, geometrical changes like inlet placement, optimization of outlet size, modification of fuel cell module system are carried out, to improve the flow characteristics. The CFD analysis of the optimized model is again carried out and the results show good improvement in protective gas flow behavior.

  • PDF

CFD 프로그램 개발자를 위한 메타컴퓨팅 시스템 (The Metacomputing System for CFD Program Developer)

  • 강경우
    • 한국산학기술학회논문지
    • /
    • 제2권1호
    • /
    • pp.43-51
    • /
    • 2001
  • 메타컴퓨팅 시스템은 분산된 컴퓨팅 자원들과 가시화 장비들을 통합하여 사용자가 편리하고 신속하게 작업을 처리할 수 있게 해 주는 환경이다. 본 연구에서는 전산유체역학(CFD : Computational Fluid Dynamics) 프로그램 개발자들을 위한 메타컴퓨팅 시스템을 개발하였다. 본 시스템에서 사용자는 프로그램을 컴퓨팅 자원에 분산시키고 분산환경에서 컴파일 할 수 있으며 프로그램구조에 적합한 컴퓨팅 자원에서 그 결과를 동영상을 통하여 얻을 수 있다. 본 연구에서는 다음과 같이 두 가지 연구를 수행하였다. 전산유체역학 프로그램의 구조를 이용한 자원선정에 대한 연구, 요소시스템 통합연구. 컴퓨팅 자원 선정을 위해 전산유체역학 프로그램의 구조적인 특징을 이용하였고 실시간 가시화를 위하여 기존의 가시화 도구를 수정하여 통합하였다.

  • PDF

Transonic Flutter Suppression of the 2-D Flap Wing with External Store using CFD-based Aeroservoelasticity

  • Lee, Seung-Jun;Lee, In;Han, Jae-Hung
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제7권2호
    • /
    • pp.121-127
    • /
    • 2006
  • An analysis procedure for the combined problem of control algorithm and aeroelastic system which is based on the computational fluid dynamics(CFD) technique has been developed. The aerodynamic forces in the transonic region are calculated from the transonic small disturbance(TSD) theory. An linear quadratic regulator(LQR) controller is designed to suppress the transonic flutter. The optimal control gain is estimated by solving the discrete-time Riccati equation. The system identification technique rebuilds the CFD-based aeroelstic system in order to form an adequate system matrix which involved in the discrete-time Riccati equation. Finally the controller, that is constructed on the basis of system identification technique, is used to suppress the flutter phenomenon of the airfoil with attached store. This approach, that is, the CFD-based aeroservoelasticity design, can be utilized for the development of effective flutter controller design in the transonic region.

선형설계와 수치계산기법 응용 (Hull form Design and Application of CFD Techniques)

  • 강국진
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2000년도 추계 학술대회논문집
    • /
    • pp.9-14
    • /
    • 2000
  • Computational methods can be classified roughly into two parts: one is the methods based on a potential flow theory, and the other is numerical solvers(CFD) based on Navier-Stockes equation. Methods based on a potential theory are more effective than CFD when the free surface effect is considered. Especially Rankine source method seems to become widespread for simulations of wave making problems. For computations of viscous flow problems, CFD techniques have rapidly been developed and have shown many successful results in the viscous flow calculation. Present paper introduces a computational system 'WAVIS' which includes a pre-processor, potential ant viscous flow solvers and a post-processor. To validate the system, the calculated results for modem commercial hull forms are compared with measurements. It is found that the results from the system are in good agreement with the experimental data, illustrating the accuracy of the numerical methods employed for WAVIS.

  • PDF

비정렬 기반의 CFD 프로그램 개발 (DEVELOPMENT OF CFD PROGRAM BASED ON UNSTRUCTURED GRID SYSTEM)

  • 이정희;이상혁;이명성;허남건
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.524-529
    • /
    • 2010
  • In the present study, a CFD program is developed for the Fluid-Structure Interaction(FSI) analysis. The non-staggered, non-orthogonal, and unstructured grid system was also used to handle the complicated geometries in the program. In order to validate the capabilities of the developed CFD program, various models are investigated by using unstructured and nonorthogonal meshes. The predicted results are a good agreement with analytic solution, experimental data and commercial software. And also PISO algorithm is applied for transient flow analysis. The cyclic boundary condition and baffle cell are developed in order to improve the effectiveness of the calculation for complex geometry.

  • PDF

CFD를 이용한 소화시스템 노즐의 분무 특성에 대한 연구 (The Study of a Atomizing Characteristics of a Nozzle in a Fire Extinguishing System for using CFD)

  • 최관수;정영권;김영수;김인관
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.1184-1189
    • /
    • 2008
  • This paper is a study about characteristics of the SSC-1 nozzle, which is used in a fire extinguishing system in a ship. Through this paper, we can find that the traces and elements’ distributions obtained from experiments are as the same as the simulation analysis results of CFD program. At the point of 100mm, the $\alpha$ is 34.9 in the CFD analysis, and it is 32.5 in the experiment. This shows that there is no big different between the CFD analysis and the experiment result. And the average elements velocity is similar to the SMD.

  • PDF

CFD모사를 이용한 저수지 물순환장치 유동 설계 (Design of convection current circulation system in reservoir using CFD simulation)

  • 이요상
    • 환경영향평가
    • /
    • 제21권1호
    • /
    • pp.133-142
    • /
    • 2012
  • Convection Current Circulation System(CCCS) in stratified reservoir controls development of anaerobic condition and algal bloom during summer. In order to increase the CCCS effectiveness, we analyze diverse design parameters to make optimize the flow pattern in reservoir. In this study, we interpret the internal flow with installation and operation condition of CCCS based on CFD in reservoir. Design variables of CCCS is reservoir depth, stratification strength, distance of between CCCS and so on. Since reservoir depth and stratification strength in variables is depending on natural phenomenon, we evaluated current circulation effect by distance of CCCS and proposed the optimal design condition using CFD simulation. Flow and diffusion changes in water body was assessed by temperature and dye test. Changes in water floor temperature at 40m intervals was slowly descending over 37 hours. Dye diffusion simulation at 60m intervals, the radius of the spread between two devices were overlapped after 12 hours.

자동화된 CFD 적용을 위한 통합형 S/W의 개발에 관한 연구 (Development of an Integrated S/W for Automated CFD Application)

  • 김기연;김병수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1998년도 추계 학술대회논문집
    • /
    • pp.29-35
    • /
    • 1998
  • In this paper, the on-going effort and progress for developing an integrated software for automated CFD application is described. As an outcome of the effort devoted so far, a new system, ICFDIT, is developed and introduced in this paper. The new system can be used to solve fluid dynamics problems in a convenient graphical environment, and it includes a pre-processor, a main-processor, and a post-processor. Usage of the system and examples are demonstrated, and some issues for improvement of the system are discussed.

  • PDF