• Title/Summary/Keyword: CFD software

Search Result 304, Processing Time 0.039 seconds

Numerical Analysis of Turbulent Flow around Tube Bundle by Applying CFD Best Practice Guideline (CFD 우수사례 지침을 적용한 관 다발 주위의 난류유동 수치해석)

  • Lee, Gong Hee;Bang, Young Seok;Woo, Sweng Woong;Cheng, Ae Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.10
    • /
    • pp.961-969
    • /
    • 2013
  • In this study, the numerical analysis of a turbulent flow around both a staggered and an inline tube bundle was conducted using ANSYS CFX V.13, a commercial CFD software. The flow was assumed to be steady, incompressible, and isothermal. According to the CFD Best Practice Guideline, the sensitivity study for grid size, accuracy of the discretization scheme for convection term, and turbulence model was conducted, and its result was compared with the experimental data to estimate the applicability of the CFD Best Practice Guideline. It was concluded that the CFD Best Practice Guideline did not always guarantee an improvement in the prediction performance of the commercial CFD software in the field of tube bundle flow.

Validation of a CFD model for hydraulic seals

  • Roy, Vincent Le;Guibault, Francois;Vu, Thi C.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.400-408
    • /
    • 2009
  • Optimization of seal geometries can reduce significantly the energetic losses in a hydraulic seal [1], especially for high head runner turbine. In the optimization process, a reliable prediction of the losses is needed and CFD is often used. This paper presents numerical experiments to determine an adequate CFD model for straight, labyrinth and stepped hydraulic seals used in Francis runners. The computation is performed with a finite volume commercial CFD code with a RANS low Reynolds turbulence model. As numerical computations in small radial clearances of hydraulic seals are not often encountered in the literature, the numerical results are validated with experimental data on straight seals and labyrinth seals. As the validation is satisfactory enough, geometrical optimization of hydraulic seals using CFD will be studied in future works.

Development of an Integrated S/W for Automated CFD Application (자동화된 CFD 적용을 위한 통합형 S/W의 개발에 관한 연구)

  • Kim Kiyoun;Kim Byoungsoo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.29-35
    • /
    • 1998
  • In this paper, the on-going effort and progress for developing an integrated software for automated CFD application is described. As an outcome of the effort devoted so far, a new system, ICFDIT, is developed and introduced in this paper. The new system can be used to solve fluid dynamics problems in a convenient graphical environment, and it includes a pre-processor, a main-processor, and a post-processor. Usage of the system and examples are demonstrated, and some issues for improvement of the system are discussed.

  • PDF

Aha, CST and CFD !

  • Kim, S.J.;Kim, M.K.;Moon, J.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.9-18
    • /
    • 2009
  • This paper presents the state of the art of computational structures technology(CST) and comparison of two computational mechanics - CST and CFD, to the CFD engineers. Classical mechanics is based on the five classical axioms which describe the motion and behaviors of the continuum materials like solid structures and fluids. Computational structures technology uses the finite element method to solve the governing equation, whereas finite volume method is generally used in CFD. A few famous commercial structural analysis programs and DIAMOND/IPSAP will be introduced. DIAMOND/IPSAP is the efficient parallel structural analysis package developed by our research team. DIAMOND/IPSAP shows the better performance than the commercial structural analysis software not only in the parallel computing environments but also in a single computer.

  • PDF

Applicability of Computational Fluid Dynamics on Industrial Ventilation Engineering (산업환기공학에 대한 전산유체역학의 응용가능성)

  • Ha, Hyun-Chul;Kim, Tae-Hyeung;Shim, Kwang-Jin
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.8 no.2
    • /
    • pp.163-177
    • /
    • 1998
  • Computational Fluid Dynamics(CFD) was applied to predict air flow around the hoods : circular hoods, square hoods, and push-pull hoods. A commercially available CFD software, CFD-ACE(Ver. 4.0), was tested, which is based on the finite volume method using the ${\kappa}-{\varepsilon}$ turbulence model. Numerical results were compared with the experimental, analytical and numerical results from other studies. CFD solutions showed an excellent agreement with the previous experimental and numerical results. It is promising that CFD techniques could be applied on the variety of complex problems in the industrial ventilation engineering.

  • PDF

DEVELOPMENT OF CFD PROGRAM BASED ON UNSTRUCTURED GRID SYSTEM (비정렬 기반의 CFD 프로그램 개발)

  • Lee, Jung-Hee;Lee, Sang-Hyuk;Lee, Myung-Sung;Hur, Nahm-Keon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.524-529
    • /
    • 2010
  • In the present study, a CFD program is developed for the Fluid-Structure Interaction(FSI) analysis. The non-staggered, non-orthogonal, and unstructured grid system was also used to handle the complicated geometries in the program. In order to validate the capabilities of the developed CFD program, various models are investigated by using unstructured and nonorthogonal meshes. The predicted results are a good agreement with analytic solution, experimental data and commercial software. And also PISO algorithm is applied for transient flow analysis. The cyclic boundary condition and baffle cell are developed in order to improve the effectiveness of the calculation for complex geometry.

  • PDF

CFD Analysis of Leakage Prediction for Brush Element (CFD를 활용한 브러쉬 요소의 누설유량 예측 해석)

  • Kim, Kyul;Ha, Tae Woong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.2
    • /
    • pp.11-16
    • /
    • 2017
  • The accurate prediction of leakage flow through the brush element of brush seal at the steam turbine is important to find optimum design parameters for increasing an efficiency. In this study, CFD analysis method using commercial software FLUENT is proposed to predict leakage through the brush element. Since the brush element has a complex three-dimensional shape with many bristle assemblies, it is difficult to analyze the flow field. Therefore, if the brush element is assumed to be porous medium region, the analysis time can be shortened. Two determination methods of resistance coefficients of the Darcian porous medium equation are suggested. By comparing the 2D and 3D CFD analysis results for the leakage of the brush element using the two resistance coefficient determination methods, the effectiveness of the analysis for the porous medium assumption is proved.

OpenFOAM : Open source CFD in research and industry

  • Jasak, Hrvoje
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.1 no.2
    • /
    • pp.89-94
    • /
    • 2009
  • The current focus of development in industrial Computational Fluid Dynamics (CFD) is integration of CFD into Computer-Aided product development, geometrical optimisation, robust design and similar. On the other hand, in CFD research aims to extend the boundaries of practical engineering use in "non-traditional" areas. Requirements of computational flexibility and code integration are contradictory: a change of coding paradigm, with object orientation, library components, equation mimicking is proposed as a way forward. This paper describes OpenFOAM, a C++ object oriented library for Computational Continuum Mechanics (CCM) developed by the author. Efficient and flexible implementation of complex physical models is achieved by mimicking the form of partial differential equation in software, with code functionality provided in library form. Open Source deployment and development model allows the user to achieve desired versatility in physical modeling without the sacrifice of complex geometry support and execution efficiency.

A Study on Internal Flow of Mixing Tank by CFD (CFD를 이용한 가향 탱크 내부 유동에 관한 연구)

  • Chung, Han-Joo;Cho, Sung-Eel;Yang, Jin-Chul
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.32 no.2
    • /
    • pp.63-69
    • /
    • 2010
  • In the chemical, mineral and electronics, mechanically stirred tanks are widely used for complex liquid mixing processes. The paper present results from a computational fluid dynamics (CFD) model for the mixing tank in casing process. We used CFD software, FLUENT(Fluent, Inc, Lebanon, NH, version 6.2). A species transport model was used to model the problem. The flow patterns in a mixing tank, 1.6 m in diameter and 2.0 m in height, were studied using CFD. Numerical analysis results show that improved mixing tank was reduced low speed flow region and turbulent region in internal flow of mixing tank.