• Title/Summary/Keyword: CFD analyses

Search Result 291, Processing Time 0.028 seconds

Numerical Analyses of Three-Dimensional Thermo-fluid flow through Mixing Vane in A Subchannel of Nuclear Reactor (원자로 부수로내 혼합날개를 지나는 삼차원 열유동 해석)

  • Choi, Sang-Chul;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.3
    • /
    • pp.311-318
    • /
    • 2003
  • The present work evaluates the effects of mixing vane shape on the flow structure and heat transfer downstream of mixing vane in a subchannel of fuel assembly. by obtaining velocity and pressure fields. turbulent intensity. flow-mixing factors. heat transfer coefficient and friction factor using three-dimensional RANS analysis. Four different shapes of mixing vane. which were designed by the authors were tested to evaluate the performances in enhancing the heat transfer. Standard k-$\varepsilon$ model is used as a turbulence closure model. and. periodic and symmetry conditions are set as boundary conditions. The flow blockage ratio is kept constant. but the twist angle of mixing vane is changed. The results with three turbulence models were compared with experimental data.

Flow Analysis according to the Installation of an Aero Part in a Sports Car (스포츠카의 에어로 파츠 설치에 따른 유동해석)

  • Choi, Kyekwang;Cho, Jaeung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.1
    • /
    • pp.36-42
    • /
    • 2020
  • In this study, flow analyses of a vehicle at driving were carried out after each installation of a tuning part, specifically the bonnet air ducts, the rear spoiler, and the rear diffuser. The study models were designed to comprise a total of eight cases in which each of the three parts were mounted individually or all together in vehicles. Assuming that the vehicle were driven with an average high speed of 100 km/h, the speed and pressure around the vehicle were obtained using CFD when driving. The rear diffuser that becomes the most effective among the three mounting parts has a major role in reducing air resistance.

Numerical Analyses of Fuel Sprays in a Constant Volume Chamber (정적챔버내 연료분무의 수치해석적 연구)

  • Yang, Du-Han;Park, Hyung-Koo
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.974-979
    • /
    • 2003
  • This study aimed to analyze spray characteristics and the ambient flow field in the mixture preparation state of the premixed combustion stage. It is very important to understand the spray characteristics and the fuel injection conditions in direct injection diesel engine because the emission gas compositions from diesel engines are related to spray formation processes of the premixed combustion stage. The numerical simulation was performed using the STAR-CD which is a commercial CFD code. Computed results of the transient high pressure diesel spray were compared with experimental results of the same spray injection condition in the constant volume chamber. The results show that spray patterns of numerical simulation agree with this experimental results comparatively.

  • PDF

Transonic Aeroelastic Analysis of Business Jet Aircraft Wing Model (비즈니스 제트 항공기 날개의 천음속 공탄성 해석)

  • Kim, Yo-Han;Kim, Dong-Hyun;Tran, Thanh-Toan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.299-299
    • /
    • 2011
  • In this study, transonic aeroelastic response analyses have been conducted for the business jet aircraft configuration considering shockwave and flow separation effects. The developed fluid-structure coupled analysis system is applied for aeroelastic computations combining computational structural dynamics(CSD), finite element method(FEM) and computational fluid dynamics(CFD) in the time domain. It can give very accurate and useful engineering data on the structural dynamic design of advanced flight vehicles. For the nonlinear unsteady aerodynamics in high transonic flow region, Navier-Stokes equations using the structured grid system have been applied to wing-body configurations. In transonic flight region, the characteristics of static and dynamic aeroelastic responses have been investigated for a typical wing-body configuration model. Also, it is typically shown that the current computation approach can yield realistic and practical results for aircraft design and test engineers.

  • PDF

A Study of Performance Analysis for a Steam Turbine Blade (증기터빈 날개의 성능해석에 대한 연구)

  • Chung, Kyung-Nam;Kim, Yang-Ik;Sung, Ju-Heon;Chung, In-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.119-124
    • /
    • 2004
  • In this study, a rotor blade of a Curtis turbine is investigated. Bezier curve is generally used to define the profile of turbine blades. However, this curve gives a feature of global control, which is not proper to a supersonic impulse turbine blade. Thus, a blade design method is developed by using B-spline curve so that local control is possible to obtain an optimized blade section. To design a Curtis turbine blade section systematically, the blade section has been changed by varying three design parameters using central composite design method. Flow analyses have been carried out for the blade sections, and the effects of design parameters are evaluated.

  • PDF

Numerical Flow Analysis of a Supersonic Impulse Turbine with Nozzles and Rotor blades (노즐과 로터가 장착된 초음속 충동형 터빈의 전산유동해석)

  • Park, Pyun Goo;Lee, En Seok;Jeong, Eun Hwan;Kim, Jinhan
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.445-451
    • /
    • 2004
  • Four design candidates for a 1.4MW class partial admission turbine have been chosen from a Preliminary design process. Their performance were estimated through the 3-D numerical analyses using a frozen rotor method. In order to select the optimum design, each flow analysis result was compared with others. Flow characteristics in the passages and some types of losses induced by shocks and wakes were found from calculation results. Based on these calculations, a new rotor blade was redesigned and compared with previous one through flow analysis.

  • PDF

Development of the Fouling-Controlled Ball Valve Used for Gas-Solid Flow (화울링 저감을 위한 분체용 볼 밸브의 개발)

  • Lee, Chan;Won, Young Shik
    • Clean Technology
    • /
    • v.11 no.4
    • /
    • pp.181-188
    • /
    • 2005
  • Developed is the new gas-solid flow ball valve where air injection purging concept is applied for the control and the reduction of particle fouling. CFD analyses are conducted for investigating the interaction between gas-sold and air injection streams and the fouling phenomena in valve, and the analysis results are reflected in the design of valve geometry and air injection condition. Through the actual tests on designed ball valve, the present valve is shown to be superior in fouling reduction.

  • PDF

Analysis of Local Wall Thinning around the Extraction Steam Entrance for the 6th Feedwater Heater Shell in the Nuclear Power Plants (원전 6단 급수가열기 추기증기 입구노즐 주변의 동체 국부 감육 원인 분석)

  • Song, Seok-Yoon;Kim, Hyung-Nam
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.4
    • /
    • pp.54-62
    • /
    • 2009
  • The feedwater heaters are Critical components in a nuclear power plant. As the operation years of heaters go by, the maintenance costs required for continuous operation increase. When the carbon steel components in nuclear make contact with running fluid, the wall thinning caused by FAC (flow accelerated corrosion) can be generated. Local wall thinning is inevitable at the area around wet steam entrance to be attacked due to the long term operation. Sometimes the shell with thinned wall is eventually ruptured. To identify the relationship between the local wall thinning and fluid behavior of the feedwater heater, the practical data of a plant, which were based on ultrasonic thickness measurement tests, were analyzed and CFD(Computed Fluid Dynamics) analyses were performed.

Numerical Study on Effects of Design Factors on Flow Characteristics of a Vane Pump (베인 펌프 설계인자 변화에 따른 내부 유동 해석)

  • Lee, Sang-Hyuk;Hur, Nahm-Keon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.6
    • /
    • pp.24-31
    • /
    • 2007
  • In the present study, the effects of the design factors and operating conditions on flow characteristics of a vane pump for the automotive power steering system has been analyzed numerically. An unsteady moving mesh technique with cell expansion/contraction method is used to simulate the rotation of vanes with respect to stationary inlet and outlet. As a result, the flow characteristics of the flow rate and pressure rise across the vane pump were obtained. The numerical analyses for the various design factors such as number of vanes and thickness between the rotor and camring and for various operating conditions such as rotational speed and pressure difference between inlet and outlet were extensively performed. And the results were discussed in the paper.

Large-Eddy Simulation of Turbulent Channel Flow Using a Viscous Numerical Wave Tank Simulation Technique (점성 수치파랑수조 기술을 이용한 평판간 난류유동의 LES 해석)

  • 박종천;강대환;윤현식;전호환
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.1-9
    • /
    • 2004
  • As the first step to investigate the nonlinear interactions between turbulence and marine structures inside a viscous NWT, a LES technique was applied to solve the turbulent channel flow for =150. The employed turbulence models included 4 types: the Smagorinsky model, the Dynamic SGS model, the Structure Function model, and the Generalized Normal Stress model. The simulated data in time-series for the LESs were averaged in both time and space, and statistical analyses were performed. The results of the LESs were compared with those of a DNS, developed in the present study and two spectral methods by Yoon et al.(2003) and Kim et a1.(1987). Based on this research, the accuracy of LESs has been found to be still related to the number of grids for fine grid size).