• 제목/요약/키워드: CFD Technique

검색결과 422건 처리시간 0.029초

유동장 데이터의 입체적 가시화를 위한 3-D 가상현실 기법의 적용 (STUDY ON 3-D VIRTUAL REALITY FOR STEREOSCOPIC VISUALIZATION OF FLOW FIELD DATA)

  • 하재황;김병수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.347-351
    • /
    • 2010
  • In this paper, our effort to apply 3-D Virtual Reality system for stereoscopic visualization of flow data is briefly described. This study is an extension of our previous and on-going research efforts to develop DATA(Data Analysis and Visualization Application) program, which is a data visualization program developed by using Qt as GUI development environment and OpenGL as graphic library. The program is developed upon the framework of object-oriented programming and it was originally developed by using Qt 3.3.3 environment. In this research the program is converted into a Qt 4.3.3-compatible version, and this new version is developed on Visual Studio 2005. And to achieve a stereoscopic viewing capability, two graphic windows are used to render its own viewing image for the lift and right eye respectively. These two windows are merged into one image using 3D monitor and the viewers can see the data visualization results with stereoscopic depth effects by using polarizing glasses. In this paper three dimensional data visualization with stereoscopic technique combined with 3D Monitor is demonstrated, and the current achievement would be a good start-up for further development of low-cost high-quality stereoscopic data visualization system.

  • PDF

표면 조도와 곡률 반경에 대한 U-자관 압력 손실의 상관관계 (THE CORRELATION OF PRESSURE DROP FOR SURFACE ROUGHNESS AND CURVATURE RADIUS IN A U-TUBE)

  • 박정후;장세명;이신영;장강원
    • 한국전산유체공학회지
    • /
    • 제20권1호
    • /
    • pp.39-46
    • /
    • 2015
  • In this research, we studied the pressure drop affecting on the internal surface roughness and the curvature radius of a U-tube, which is used for the cooling system in PWR(Pressurized Water Reactor). Using ANSYS-FLUENT, a commercial code based on CFD(Computational Fluid Dynamics) technique, we compared a Moody chart with the Darcy friction factor changed by a range of various surface roughness and Reynolds numbers of a straight pipe model. We studied the effect giving variation about a range of various surface roughness and the curvature radius of the full scale U-tube model. The material of the heat transfer tube is Inconel 690 used in the steam generator. We compared the velocity distribution of selected 4 locations, and derived the correlation between the surface roughness and the pressure drop for the U-tube of each representative curvature radius using the linear regression method.

위상최적설계 기법을 이용한 이중편심 버터플라이 밸브의 디스크에 대한 형상설계 (SHAPE DESIGN FOR DISC OF A DOUBLE-ECCENTRIC BUTTERFLY VALVE USING THE TOPOLOGY OPTIMIZATION TECHNIQUE)

  • 양설민;백석흠;강상모
    • 한국전산유체공학회지
    • /
    • 제17권1호
    • /
    • pp.61-69
    • /
    • 2012
  • In this paper, the shape design process is briefly discussed emphasizing the use of topology optimization in the conceptual design stage. The basic idea is to view feasible domains for sensitivity region concepts. In this method, the main process consists of two steps: as the design moves further inside the feasible domain using Taguchi method, and thus becoming more successful topology optimization, the sensitivity region becomes larger. In designing a double-eccentric butterfly valve, related to hydrodynamic performance and disc structure, are discussed where the use of topology optimization has proven to dramatically improve an existing design and significantly decrease the development time of a shape design. CFD analysis results demonstrate the validity of this approach.

CFD를 이용한 테일러 반응기의 유동 특성에 관한 수치적 연구 (Numerical Study on Fluid Flow Characteristics in Taylor Reactor using Computational Fluid Dynamics)

  • 이승호;심규환;전동협
    • 대한기계학회논문집B
    • /
    • 제40권1호
    • /
    • pp.9-19
    • /
    • 2016
  • 본 연구는 테일러 반응기내 각속도와 유입속도 변화에 따른 테일러 유동의 변화와 입자의 체류시간 변화를 전산수치해석 기법을 이용하여 알아보았다. 반응기내 유동은 각속도가 증가함에 따라 점점 불안정해지는 경향을 보였다. 유동은 레이놀즈 수의 증가에 따라 CCF, TVF, WVF, MWVF 영역으로 이동하게 되고 각 영역에서 상이한 유동특성을 보였다. 유입속도의 변화가 테일러 유동에 영향을 주는 것을 확인하였다. 각속도가 빠를수록, 그리고 유입속도가 느릴수록 입자의 체류시간과 표준편차는 증가하였다.

체크밸브가 달린 열공압 방식의 PDMS-유리마이크로 펌프에 관한 연구 (A Study About PDMS-Glass Based Thermopneumatic Micropump Integrated with Check Valve)

  • 고용준;조웅;안유민
    • 대한기계학회논문집A
    • /
    • 제32권9호
    • /
    • pp.720-727
    • /
    • 2008
  • Microfluidic single chip integrating thermopneumatic micropump and micro check valve are developed. The micropump and micorvalve are made of biocompatible materials, glass and PDMS, so as to be applicable to the biochip. By using the passive-type check valve, backward flow and fluid leakage are blocked and flow control is stable and precise. The chip is composed of three PDMS layers and a glass substrate. In the chip, flow channel and pump chamber were made on the PDMS layers by the replica molding technique and pump heater was made on the glass substrate by Cr/Au deposition. Diameter of the pump chamber is 7 mm and the width and depth of the channel are 200 and $180{\mu}m$, respectively. The PDMS layers chip and the heater deposited glass chip are combined by a jig and a clamp for pumping operation, and they are separable so that PDMS chip is used as a disposable but the heater chip is able to be used repeatedly. Pumping performance was simulated by CFD software and investigated experimentally. The performance was the best when the duty ratio of the applied voltage to the heater was 33%.

다구찌 기법과 다상유동해석을 이용한 분급기 운전조건 최적화 (Optimization of Classifier Operation Conditions Using Taguchi Method and Multiphase Flow Analysis)

  • 진병주;박민호;윤태종;김영주;강봉용;심지연;김일수
    • 한국생산제조학회지
    • /
    • 제26권3호
    • /
    • pp.278-284
    • /
    • 2017
  • Generally, classifiers have been used as machines to crush raw materials and classify suitable particle sizes in all industrial fields, such as food, chemical, and mineral. However, the technique for classifying micron-sized particles between 5 and $20{\mu}m$ is inferior. In particular, numerous experiments and considerable experiences are required to predict the particle size, because the classifier particle size is determined according to the internal flow. However, it is quite difficult to set the driving conditions so that the desired particle size can be classified only by experience and experimentation. Therefore, this study proposes a method of predicting the average particle size by employing multiphase flow analysis and the Taguchi method; this method is subsequently verified.

CANDU-6 감속재 탱크 모형의 유동장 전산해석 및 예비측정 (Computational Flow Analysis and Preliminary Measurement for the CANDU-6 Moderator Tank Model)

  • 차재은;최화림;이보욱;김형태
    • 한국가시화정보학회지
    • /
    • 제10권3호
    • /
    • pp.30-36
    • /
    • 2012
  • We are planning to construct a scaled-down moderator facility to simulate the CANDU-6 moderator circulation phenomena during steady state operating and accident conditions. In the present work a preliminary experiment using a 1/40 scaled-down moderator tank has been performed to investigate the anticipated problems of the flow visualization and measurement in the planning scaled-down moderator facility. We shortly describe CFD analysis result for the 1/40 scaled-down test model and the flow measurement techniques used for this test facility under isothermal flow conditions. The Particle Image Velocimetry (PIV) method is used to visualize and measure the velocity field of water in a transparent Plexiglas tank. Planar Laser Induced Fluorescence (PLIF) technique is used to evaluate the feasibility of temperature field measurement in the range of $20-40^{\circ}C$ of water temperature using an one-color method.

47,000톤급 중형 크루즈선의 추진방식에 따른 선미부 형상과 저항특성 비교 (Comparison of the Stern Forms and Resistance Characteristics for G/T 47,000 Class Mid-size Cruise Ships)

  • 김동준;박현수;현범수;김무롱;최경식
    • 한국해양공학회지
    • /
    • 제18권5호
    • /
    • pp.57-63
    • /
    • 2004
  • Various propulsion systems, applicable for a G/T 47,000 class mid-size cruise ship, are discussed and a comparative study on stern forms and hull resistance characteristics is carried out, in relation to these propulsion systems. Based on shipyard production logs on similar cruise ships, a reference hull form of a single shaft propulsion system with center-skeg, is generated. Then two new stern hull forms are derived by using a hull transform technique: consisting of one stern form using a twin-skeg system and the other using the Azipod system. Using a CFD-based commercial flaw analysis program, WAVIS (WAve and VIScous flaw analysis system for hull form development), various hydrodynamic characteristics, including wave profiles and ship hull resistance, are compared for three hull forms.

제트 폄프 요소 내부의 유동 해석 (Internal Viscous Flow Computation Within the Jet Pump Elements)

  • 조장근;오상욱;박원규;오세민;이수원
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1996년도 춘계 학술대회논문집
    • /
    • pp.99-104
    • /
    • 1996
  • The jet pump is being used in many fields for several purposes because of its simple construction and easy operation. The characteristics of the geometrical variables, pressure gradient and velocity distribution of the jet pump are studied using the CFD technique. The flow calculations through a bended nozzle. a mixing chamber and a venturi are presented and phenomenological aspects are discussed. This study solve 3-D steady incompressible Navier-Stokes equations using the Iterative time marching scheme. The governing equations are differenced with 1st-order accurate backward difference scheme for the time derivatives and 3rd-order accurate QUICK scheme for the convective terms. The Mark-and-cell concept was applied efficiently to solve continuity equation, which is differenced 2nd-order accurate central differenced scheme. The 4th-order artificial damping is added to the continuity equation for numerical stability. A O-type of grid system is generated inside a nozzle and venturi of the jet pump. It has concluded that the results of present study properly agree with physical flow phenomena.

  • PDF

유동 해석을 이용한 평판형 고체 산화물 연료전지의 성능 특성 분석 (II) - 비등온 모델 - (Performance Predictions of the Planar-type Solid Oxide Fuel Cell with Computational Flow Analysis (II) - Non-isothermal Model -)

  • 현희철;손정락;이준식;노승탁
    • 대한기계학회논문집B
    • /
    • 제27권7호
    • /
    • pp.963-972
    • /
    • 2003
  • Performance characteristics of the planar-type solid oxide fuel cell (SOFC) are investigated by the analysis of flow fields coupled with heat and mass transfer phenomena in anode and cathode channels. For these purposes, performance analysis of the SOFC is conducted based on electrochemical reaction phenomena in electrodes and electrolyte coupled with flow fields in anode and cathode channels. In the present study, the isothermal model adopted in the previous paper prepared by the same authors is extended to the non-isothermal model by solving energy equation additionally with momentum and mass transfer equations using CFD technique. It is found that the difference between isothermal and non-isothermal models come from non-uniform temperature distribution along anode and cathode electrodes by solving energy equation in non-isothermal model. Non-uniform temperature distribution in non-isothermal model contributes to the increase of average temperature of the fuel cell and influences its performance characteristics.