• Title/Summary/Keyword: CFD 해석

Search Result 2,611, Processing Time 0.026 seconds

CFD validation for subcooled boiling under low pressure (저압에서의 과냉각 비등 현상에 대한 CFD의 유효성 검토)

  • Choi, Yong-Seok;Kim, You-Taek;Lim, Tae-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.4
    • /
    • pp.275-281
    • /
    • 2016
  • Subcooled boiling under low pressure was numerically investigated using computational fluid dynamics(CFD). The wall boiling model was used for simulating the subcooled boiling; this model requires sub-models consisting of bubble departure diameter, nucleation site density and bubble departure frequency. The CFD code CFX provides the default models based on experimental data. Because these models are mostly developed under high pressure conditions, it would not be predicted well in low pressure conditions. Thus in this study, CFD validation for subcooled boiling under low pressure was analyzed. The numerical results were compared with experimental data from published paper. Simulations were performed with mass flux ranging from 250 to $750kg/m^2s$, heat flux ranging from 0.37 to $0.77MW/m^2$ and constant outlet pressure of 0.11 MPa. Employing the empirical correlation developed under low pressures could increase the accuracy of numerical analysis.

Numerical Investigation of Sunroof Buffeting for Hyundai Simplified Model (HSM의 썬루프 버페팅 수치해석)

  • Khondge, Ashok;Lee, Myunghoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.3
    • /
    • pp.180-188
    • /
    • 2014
  • Hyundai Motor Group(HMG) carried out experimental investigation of sunroof buffeting phenomena on a simplified car model called Hyundai simplified model(HSM). HMG invited participation from commercial CFD vendors to perform numerical investigation of sunroof buffeting for HSM model with a goal to determine whether CFD can predict sunroof buffeting behavior to sufficient accuracy. ANSYS Korea participated in this investigation and performed numerical simulations of sunroof buffeting for HSM using ANSYS fluent, the general purpose CFD code. First, a flow field validation is performed using closed sunroof HSM model for 60 km/h wind speed. The velocity profiles at three locations on the top surface of HSM model are predicted and compared with experimental measurement. Then, numerical simulations for buffeting are performed over range of wind speeds, using advanced scale resolving turbulence model in the form of detached eddy simulation (DES). Buffeting frequency and buffeting level are predicted in simulation and compared with experimental measurement. With reference to comparison between experimental measurements with CFD predictions of buffeting frequency and level, conclusion are drawn about predictive capabilities of CFD for real vehicle development.

Performance Prediction and Analysis of a MEMS Solid Propellant Thruster (MEMS 고체 추진제 추력기의 성능예측 및 분석)

  • Jung, Juyeong;Lee, Jongkwang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.6
    • /
    • pp.1-7
    • /
    • 2017
  • The performance of a MEMS solid propellant thruster was predicted and analyzed through internal ballistics model and CFD analysis. The nozzle throat was $416{\mu}m$, and the area ratio of the nozzle was 1.85. As a result of the internal ballistics model, chamber pressure increased up to 197 bar and the maximum thrust was 3,836 mN. In CFD analysis, the chamber pressure of the internal ballistics model was applied as the operating pressure, and the CFD model was divided into an adiabatic and a heat loss model. As a result, the maximum thrust of the adiabatic model was 14.92% lower than that of the internal ballistics model, and the effect of heat loss was insignificant.

A Thermal Analysis of Liquid Rocket Combustors using a Modelling of Film Cooling Performance (막냉각 모형을 이용한 액체로켓엔진 연소기의 열해석)

  • Kim, Hong-Jip;Cho, Won-Kook;Moon, Yoon-Wan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.4
    • /
    • pp.85-92
    • /
    • 2006
  • A design program has been developed to predict film cooling performance of a liquid rocket engine. A thermal protecting effect of low mixture ratio gas layer has been analysed by CFD. A one-dimensional film cooling model based on the CFD results has been implemented to the previously developed design program of regenerative cooling. Satisfactory agreement has been achieved by comparing the predicted maximum heat flux at the throat of a subscale chamber and the average measured value, and the predicted nozzle average heat flux and the measured value for a full scale chamber with film cooling. It is ascertained that the film cooling is effective to reduce the throat heat flux in rocket engine chamber.

AERODYNAMIC AND NOISE CALCULATIONS OF HELICOPTER ROTOR BLADES USING LOOSE CFD-CSD COUPLING METHODOLOGY (CFD-CSD 연계 기법을 이용한 로터 블레이드 공력 및 소음 해석)

  • Kang, H.J.;Kim, D.H.;Wie, S.Y.
    • Journal of computational fluids engineering
    • /
    • v.19 no.3
    • /
    • pp.62-68
    • /
    • 2014
  • The aerodynamic and noise calculations were performed through the CFD-CSD loose coupling methodology. In the loose coupling process, the trimmed rotor airloads were predicted by the in-house CFD code based on unstructured overset meshes, and the trim of the rotorcraft and the aeroelastic deformation of rotor blades were accounted with the CAMRAD II rotorcraft comprehensive code. The set of codes was used to analyze the HART-II baseline test condition. The effect of grid resolution and time step was examined and the loose coupling approach was found to be stable and convergent for the case. Comparison of the resulting sectional airloads, structural deformations, the noise carpets and the wake geometry with experimentally measured data was presented and showed the good agreement.

CFD flow analysis of 150mm shower heads depending on plasma pitch (플라즈마 피치에 따른 150mm 샤워헤드에 대한 CFD 유동해석)

  • Kim, Dong-Hwa;Kim, Ho-Bum;Cho, Chong-Du;Jeong, Dea-Kyo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.585-589
    • /
    • 2008
  • This study is performed to analyze the fluid flow about 150mm shower heads of semiconductor device. Under the air pressure, the ideal gas of moving fluid is injected as 5m/s velocity into inlet of shower heads and the flow distribution in shower heads is measured according to pitch of plasma distribution device. As results, the maximum and minimum value of fluid velocity are investigated with their position. The velocity values at outlet are also studied. From two experiment using the plasma distribution device, the results of CFD are compared with the experimental results. That results shows stable flow of fluid in that case of corrected design from CFD.

  • PDF

Development of the CFD Program for the Cold Gas Flow Analysis in a High Voltage Circuit Breaker Using the CFD-CAD Integration (CFD-CAD 통합해석을 위한 초고압 차단기 내부의 냉가스 유동해석 프로그램 개발)

  • Lee, J.C.;Oh, I.S.
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.30-32
    • /
    • 2001
  • There are many difficult problems in analyzing the flow characteristics in a high voltage circuit breaker such as shock wave and complex geometries, which may be either static or in relative motion. Although a variety of mesh generation techniques are now available, the generation of meshes around complicated, multi-component geometries like a gas circuit breaker is still a tedious and difficult task for the computational fluid dynamics. This paper presents the CFD program for analyzing the compressible flow fields in a high voltage gas circuit breaker using the Cartesian cut-cell method based on the CFD-CAD integration, which can achieve the accurate representation of the geometry designed by a CAD tools. This technique is frequently satisfied, and it will be almost universally so in the future, as the CFD-CAD traffic increase.

  • PDF

EFD-CFD workshop : CASE 3 CFD for transonic flow regime (EFD-CFD 비교워크샵 : CASE 3 천음속영역 유동해석에 대해서)

  • Lee, Yeongbin;Kim, Namgyun;Kim, Sangho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.3
    • /
    • pp.252-258
    • /
    • 2017
  • This paper describes on introduction of CASE 3 for EFD-CFD comparison workshop which is incharged of aerodynamic subcommittee of The Korean Societry or Aeronautical and Space Science. In addition, the results of candidate for CASE 3 were compared with experimental result and computational result. Currently, for this case 3, there are eight candidates from company, university and research institute. According to comparison of their results, they are in accordance with experimental data and computational data.

CFD/CSD COUPLED ANALYSIS FOR HART II ROTOR-FUSELAGE MODEL AND FUSELAGE EFFECT ANALYSIS (HART II 로터-동체 모델의 CFD/CSD 연계해석과 동체효과 분석)

  • Sa, J.H.;You, Y.H.;Park, J.S.;Park, S.H.;Jung, S.N.;Yu, Y.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.343-349
    • /
    • 2011
  • A loosely coupling method is adopted to combine a computational fluid dynamics (CFD) solver and the comprehensive structural dynamics (CSD) code, CAMRAD II, in a systematic manner to correlate the airloads, vortex trajectories, blade motions, and structural loads of the HART I rotor in descending flight condition. A three-dimensional compressible Navier-Stokes solver, KFLOW, using chimera overlapped grids has been used to simulate unsteady flow phenomena over helicopter rotor blades. The number of grids used in the CFD computation is about 24 million for the isolated rotor and about 37.6 million for the rotor-fuselage configuration while keeping the background grid spacing identical as 10% blade chord length. The prediction of blade airloads is compared with the experimental data. The current method predicts reasonably well the BVI phenomena of blade airloads. The vortices generated from the fuselage have an influence on airloads in the 1st and 4th quadrants of rotor disk. It appeared that presence of the pylon cylinder resulted in complex turbulent flow field behind the hub center.

  • PDF