• 제목/요약/키워드: CFD, Computational fluid dynamics

검색결과 2,019건 처리시간 0.028초

전산유체역학을 이용한 NREL Phase VI 풍력터빈의 축소효과 보정 (Scale Effect Corrections of NREL Phase VI Wind Turbine by Using Computational Fluid Dynamics)

  • 박영민;장병희
    • 신재생에너지
    • /
    • 제3권3호
    • /
    • pp.54-62
    • /
    • 2007
  • The present paper describes the scale effect correction methods for scaled NREL Phase VI wind turbines by using CFD[computational fluid dynamics). For the corrections of wind turbine scale effect, various researches on the helicopter rotor scale effect were investigated and the feasibility study of the methods was performed to correct wind turbine scale effect. The present paper also introduces scale effect correction methods based on two dimensional lift slope. In order to test the present method, performance analyses of NREL Phase VI wind turbines under various scale conditions were carried out and new correction method was applied. Granting that the new correction method is valid only above Reynolds No. 100,000, it showed reasonable agreement between model and full scale wind turbines in the linear torque region.

  • PDF

난류모델이 완전혼합반응조 수치해석에 미치는 영향 연구 (The effects of turbulence models on the numerical analysis of CSTR)

  • 임영택;박노석;김성수;이범희
    • 상하수도학회지
    • /
    • 제25권3호
    • /
    • pp.375-382
    • /
    • 2011
  • The usages of CFD (Computational Fluid Dynamics) which is simulating turbulent flows in CSTRs (Complete Stirrer Tank Reactors) have been reported. Considering model strategies and simulation techniques, this paper is focused on the turbulence models. The results of this study would suggest multiple reference frameworks relevant to rotational flow simulation. Specifically, the analysis of turbulence dissipation rates referred to this study would solve the relevant environmental engineering problem and would be beneficial to the CFD in CSTRs using mechanical mixer.

The Proposal of a Quantitative Evaluation Method on Mixing Loss in the HVAC System Design

  • Yee, Jurng-Jae;Kim, Young-Tae
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제9권2호
    • /
    • pp.62-68
    • /
    • 2001
  • It is a serous subject for energy conservation to prevent the energy loss caused by the mixture of heated and cooled air jets in perimeter and interior zone of a building operated with tow kinds of air-conditioning system simultaneously. The purpose of this paper is to clarify the quantitative and qualitative mechanisms of mixing loss and to propose a evaluation method for it. By using the dynamic heat load calculation, heat extraction load of a typical office building in Busan are calculated. According to the results, numerical simulations based on CFD(Computational Fluid Dynamics) were performed in order to evaluate mixing loss in the physical size of HVAC system. Then, the distributions of air temperature and airflow patterns according to the differences of set-point temperature are analyzed to grasp relations how to influence mixing loss.

  • PDF

Prediction of solute rejection and modelling of steady-state concentration polarisation effects in pressure-driven membrane filtration using computational fluid dynamics

  • Keir, Greg;Jegatheesan, Veeriah
    • Membrane and Water Treatment
    • /
    • 제3권2호
    • /
    • pp.77-98
    • /
    • 2012
  • A two-dimensional (2D) steady state numerical model of concentration polarisation (CP) phenomena in a membrane channel has been developed using the commercially available computational fluid dynamics (CFD) package CFX (Ansys, Inc., USA). The model incorporates the transmembrane pressure (TMP), axially variable permeate flux, variable diffusivity and viscosity, and osmotic pressure effects. The model has been verified against several benchmark analytical and empirical solutions from the membrane literature. Additionally, the model is able to predict the rejection of an arbitrary solute by the membrane using a pore model, given some basic knowledge of the geometry of the solute molecule or particle, and the membrane pore geometry. This allows for predictive design of membrane systems without experimental determination of the membrane rejection for the specified operating conditions. A demonstration of the model is presented against experimental results for two uncharged test compounds (sucrose and PEG1000) from the literature. The model will be extended to incorporate charge effects, transient simulations, three-dimensional (3D) geometry and turbulent effects in future work.

Groove 단면형상에 따른 유압 Spool Valve의 윤활해석 (Lubrication Analysis of Hydraulic Spool Valve with Groove Cross Sectional Shapes)

  • 박태조;황윤건
    • Tribology and Lubricants
    • /
    • 제25권1호
    • /
    • pp.13-19
    • /
    • 2009
  • The spools in most hydraulic spool type control valve have several circumferential grooves to pre-vent well known hydraulic locking problems which result in high friction force and excessive wear. In this paper, a commercial computational fluid dynamics (CFD) code, FLUENT is used to investigate the flow and lubrication characteristics of grooved hydraulic spool valve. The stream lines and pressure distributions are obtained for various groove cross sectional shapes and film thicknesses. The stream lines are highly affected by groove cross sectional shape but pressure distributions mainly depend on the film shape and its magnitude. Therefore the numerical method adopted in this paper and results can be use in designing of various grooved spool valve.

ATRIUM SMOKE FILLING PROCESS BY COMPUTATIONAL FLUID DYNAMICS

  • Chow, W.K.;Yin, R.
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 1997년도 International Symposium on Fire Science and Technology
    • /
    • pp.456-463
    • /
    • 1997
  • Atrium buildings are commonly found in Hong Kong since 1980. Those spaces are usually crowded with people and so fire protection systems have to be installed for providing a safe environment. Smoke control system was identified to be important but no clear design guidelines are available because the smoke filling process was not well-understood. In this paper., Computational Fluid Dynamics(CFD) or fire field model is applied to study the smoke filling pattern in atrium. Two common cases on smoke spreading out from a shop adjacent to the atrium; and with a fire located at the atrium floor itself were considered. Simulations with a modified form of the CFD package TEAM were performed. Application of the predicted results Is illustrated.

  • PDF

쿨러 자켓의 유동해석 (Computational Fluid Dynamic Analysis of Cooler Jacket)

  • 이종선
    • 한국산학기술학회논문지
    • /
    • 제7권1호
    • /
    • pp.1-6
    • /
    • 2006
  • 본 논문은 CPU의 쿨러 자켓에 대하여 CFD(computational fluid dynamics) 해석을 수행하여 내부면적이 큰 쿨러 자켓의 효율이 어느 정도 좋은 지를 내부면적이 작은 쿨러 자켓과 비교분석한다. 쿨러 자켓이 냉각수와 열 교류를 원활히 할 수 있도록 쿨러 자켓의 온도분포를 통하여 적절한 형상을 설계하여 CPU 쿨러 자켓의 제작시 설계 자료로 이용하고자 한다.

  • PDF

초고속선의 선형개발과 CFD

  • 이영길
    • 대한조선학회지
    • /
    • 제32권5호
    • /
    • pp.33-35
    • /
    • 1995
  • 수치 해석적 방법으로서의 CFD(Computational Fluid Dynamics)는 급속한 전산기성능의 발달과 더불어 많은 발전을 거듭하고 있으며, 특히 선박분야에 있어서도 일반선형에 대한 주위의 유 동장해석 및 성능추정, 초기설계에의 응용에서 그 활용성이 입증되고 있다. 따라서, 초고속선에 대하여도, CFD의 대표적 장점이라 할 수 있는 실선에 대한 수치실험이 짧은 시간에 저가의 경비로 가능하다는 것과 그 결과가 모형선 실험결과보다 상세하고 충실한 정보의 확보가능 등을 감안한다면, 앞으로 초기 초고속선 선형개발단계에서 CFD의 적용을 기대해 볼만 할 것이다. 이러한 관점으로부터, 본 고에서는 초고속선의 선형개발에 있어서 CFD의 활용성에 관하여 고 찰해 보고자 한다.

  • PDF

PUMP DESIGN AND COMPUTATIONAL FLUID DYNAMIC ANALYSIS FOR HIGH TEMPERATURE SULFURIC ACID TRANSFER SYSTEM

  • Choi, Jung-Sik;Shin, Young-Joon;Lee, Ki-Young;Yun, Yong-Sup;Choi, Jae-Hyuk
    • Nuclear Engineering and Technology
    • /
    • 제46권3호
    • /
    • pp.363-372
    • /
    • 2014
  • In this study, we proposed a newly designed sulfuric acid transfer system for the sulfur-iodine (SI) thermochemical cycle. The proposed sulfuric acid transfer system was evaluated using a computational fluid dynamics (CFD) analysis for investigating thermodynamic/hydrodynamic characteristics and material properties. This analysis was conducted to obtain reliable continuous operation parameters; in particular, a thermal analysis was performed on the bellows box and bellows at amplitudes and various frequencies (0.1, 0.5, and 1.0 Hz). However, the high temperatures and strongly corrosive operating conditions of the current sulfuric acid system present challenges with respect to the structural materials of the transfer system. To resolve this issue, we designed a novel transfer system using polytetrafluoroethylene (PTFE, $Teflon^{(R)}$) as a bellows material for the transfer of sulfuric acid. We also carried out a CFD analysis of the design. The CFD results indicated that the maximum applicable temperature of PTFE is about 533 K ($260^{\circ}C$), even though its melting point is around 600 K. This result implies that the PTFE is a potential material for the sulfuric acid transfer system. The CFD simulations also confirmed that the sulfuric acid transfer system was designed properly for this particular investigation.

CFD를 이용한 피트의 지중열 모델 구축에 관한 연구 (A Geothermal Model of Pit Area Using Computational Fluid Dynamics)

  • 민준기;김정태
    • KIEAE Journal
    • /
    • 제8권5호
    • /
    • pp.11-16
    • /
    • 2008
  • This research has established CFD model on pit's cool-tube system through heat and air movement simulations, of which data was based on experimental and verification. This research work verified the effectiveness of the cool-tube system by analysing temperature, humidity and air current of the actually installed case. Also, we analysed heat transfer through air current simulation and the results are as followings. Firstly, we experiment on temperature, humidity and speed of air currents of the cool tube system with pit space during the month of May (spring). The average exterior temperature was $16.1^{\circ}C$, and $18.2^{\circ}C$ for the pit, $24.7^{\circ}C$ for the compressor room. Secondly, based on measured data of real case, we have analysed heat transfer through air current simulation and verified our proposed model. The actual measurement of average temperature of exhaust air of the pit's area is $19.7^{\circ}C$ with tolerance of $-0.33^{\circ}C{\sim}-0.6^{\circ}C$ compared to above simulations. Thirdly, having verified air current simulation model with formation of 260,000 and 1,000,000 cells, we could get reasonable near values with 260,000 cells. Lastly, the next step of research would be focused on proposing the best possible pit's cool-tube system after analysis of heat transfer of the air current simulation based on verified CFD model.