• Title/Summary/Keyword: CFD, Computational fluid dynamics

Search Result 2,015, Processing Time 0.031 seconds

Studies on Reduction of Yarn Hairiness by Nozzles in Ring Spinning and Winding by Airflow Simulation

  • Rengasamy R. S.;Patnaik Asis;Punekar Hemant
    • Fibers and Polymers
    • /
    • v.7 no.3
    • /
    • pp.317-322
    • /
    • 2006
  • Reduction of yam hairiness by nozzles in ring spinning and winding is a new approach. Simulation of the airflow pattern inside the nozzles provides useful information about actual mechanism of hairiness reduction. The swirling air current inside the nozzles is capable of wrapping the protruding hairs around the yam body, thereby reducing yam hairiness. Since production rate of winding is very high and the process itself increases yarn hairiness any method to reduce the hairiness of yarns at this stage is a novel approach. A CFD (computational fluid dynamics) model has been developed to simulate the airflow pattern inside the nozzles using Fluent 6.1 software. In this study, both S- and Z-type nozzles having an axial angle of 500 and diameter of 2.2 mm were used for simulation studies. To create a swirling effect, four air holes of 0.4 mm diameter are made tangential to the inner walls of the nozzles. S- and Z-twisted yams of 30 tex were spun with and without nozzles and were tested for hairiness, tensile and evenness properties. The total number of hairs equal to or exceeding 3 mm (i.e. the S3 values) for yam spun with nozzle is nearly 49-51 % less than that of ring yams in case of nozzle-ring spinning, and 15 % less in case of nozzle-winding, while both the yarn types show little difference in evenness and tensile properties. Upward airflow gives best results in terms of hairiness reduction for nozzle-ring and nozzle wound yams compared to ring yarns. Yarn passing through the centre of the nozzle shows maximum reduction in S3 values.

Evaluation of Flow Characteristics in Water Supply Pipes Shielding Electromagnetic Pulse of 100 dB with Concentric and Eccentric Reducers (Concentric Reducer와 Eccentric Reducer를 사용한 EMP 차폐 100dB급 급수관의 유동특성 평가)

  • Pang, Seung-Ki;Ahn, Hye-Rin
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.13 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • In this paper, the flow characteristics of water in the water supply pipes of a WBC array were evaluated. We simulated the flow velocities and pressures for a standard pipe, an expansion pipe with a concentric reducer, and an expansion pipe with an eccentric reducer using computational fluid dynamics. In the case of the standard pipe, when the inlet flow velocities were 0.5 m/s and 2.0 m/s, the maximum flow velocities at the center of the WBC array were 0.54 m/s and 2.74 m/s, respectively, which were the greatest values among those of all the pipe models considered. In the case of the expansion pipe, the maximum flow velocities at the center of the WBC array were almost the same under the same conditions regardless of the type of reducer. The pressure losses in the pipe due to the concentric and eccentric reducers were found to be (165.09 ${\times}$ inlet $velocity^{1.6677}$) and (210.98 ${\times}$ inlet $velocity^{1.6478}$), respectively. The coefficient of determination at this time was greater than 0.99 and was the same for both the models. As a simulation result, it was found that in order to reduce the pressure loss when pipe with WBC array is connected with a conventional pipe, diameter of the pipe with WBC array at that section should be enlarged by one step, and then connected to the conventional pipe with a concentric reducer.

Hull-form optimization of KSUEZMAX to enhance resistance performance

  • Park, Jong-Heon;Choi, Jung-Eun;Chun, Ho-Hwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.1
    • /
    • pp.100-114
    • /
    • 2015
  • This paper deploys optimization techniques to obtain the optimum hull form of KSUEZMAX at the conditions of full-load draft and design speed. The processes have been carried out using a RaPID-HOP program. The bow and the stern hull-forms are optimized separately without altering neither, and the resulting versions of the two are then combined. Objective functions are the minimum values of wave-making and viscous pressure resistance coefficients for the bow and stern. Parametric modification functions for the bow hull-form variation are SAC shape, section shape (U-V type, DLWL type), bulb shape (bulb height and size); and those for the stern are SAC and section shape (U-V type, DLWL type). WAVIS version 1.3 code is used for the potential and the viscous-flow solver. Prior to the optimization, a parametric study has been conducted to observe the effects of design parameters on the objective functions. SQP has been applied for the optimization algorithm. The model tests have been conducted at a towing tank to evaluate the resistance performance of the optimized hull-form. It has been noted that the optimized hull-form brings 2.4% and 6.8% reduction in total and residual resistance coefficients compared to those of the original hull-form. The propulsive efficiency increases by 2.0% and the delivered power is reduced 3.7%, whereas the propeller rotating speed increases slightly by 0.41 rpm.

A Basic Study on the Air Circulation System for Heating using Solar and Geothermal Heat - Focused on Trombe Wall Thermal Storage Performance using Solar Heat - (태양열과 지열을 이용한 난방용 공기순환시스템 기초연구 - 태양열을 이용한 트롬월식의 축열성능 중심으로 -)

  • Kim, Byung-Yun;Choi, Yong-Seok
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.19 no.4
    • /
    • pp.49-56
    • /
    • 2017
  • Each country in the world currently concentrates on shifting into clean energy, which can be alternative energy, for global environment protection and solution to the problem of fossil fuel depletion. The Korean government is predicted to develop renewable energy, such as solar power, ground power, and offshore wind power, and to increase their supply ratios by ending the use of coals and nuclear power plants. This study conducted experiments on thermal storage performance of Trombe wall thermal storage materials using solar power and simulations in order to offer baseline data for the development of a hybrid air circulation system for heating that can maximize efficiency by simultaneously using solar and geothermal power. The study results are as follows: (1) In all the specimens with 3m, 5m, and 7m in the length of thermal storage pipe, $5.7^{\circ}C$, $7.8^{\circ}C$, and $10.5^{\circ}C$ rose, respectively, as the thermal storage effect of the specimens attaching insulation film and black tape to the general funnel. They were most excellent in terms of thermal storage effect. (2) As a result of thermal performance evaluation on the II type specimens, II-3 ($7.8^{\circ}C$ rise) > II-4 ($5.3^{\circ}C$ rise) > II-1 ($3.9^{\circ}C$ rise) > II-2 ($2.3^{\circ}C$ rise) was revealed, and thus II-3 (insulation film + black tape) was most effective as shown in the I type. (3) This study analyzed air current and temperature distribution inside of the greenhouse by linking actually measured values and simulation interpretation results through the interpretation of CFD (computational fluid dynamics). As a result, the parts absorbing heat and discharging heat around the thermal storage pipe could be visibly classified, and temperature distribution inside of the greenhouse around the thermal storage pipe could be figured out.

Research Investigations at the Municipal (2×35) and Clinical (2×5 MW) Waste Incinerators in Sheffield, UK

  • Swithenbank, J.;Nasserzadeh, V.;Ewan, B.C.R.;Delay, I.;Lawrence, D.;Jones, B.
    • Clean Technology
    • /
    • v.2 no.2
    • /
    • pp.100-125
    • /
    • 1996
  • After recycle of spent materials has been optimised, there remains a proportion of waste which must be dealt with in the most environmentally friendly manner available. For materials such as municipal waste, clinical waste, toxic waste and special wastes such as tyres, incineration is often the most appropriate technology. The study of incineration must take a process system approach covering the following aspects: ${\bullet}$ Collection and blending of waste, ${\bullet}$ The two stage combustion process, ${\bullet}$ Quenching, scrubbing and polishing of the flue gases, ${\bullet}$ Dispersion of the flue gases and disposal of any solid or liquid effluent. The design of furnaces for the burning of a bed of material is being hampered by lack of an accurate mathematical model of the process and some semi-empirical correlations have to be used at present. The prediction of the incinerator gas phase flow is in a more advanced stage of development using computational fluid dynamics (CFD) analysis, although further validation data is still required. Unfortunately, it is not possible to scale down many aspects of waste incineration and tests on full scale incinerators are essencial. Thanks to a close relationship between SUWIC and Sheffield Heat&Power Ltd., an extended research programme has been carried out ar the Bernard Road Incinerator plant in Sheffield. This plant consists of two Municipal(35 MW) and two Clinical (5MW) Waste Incinerators which provide district heating for a large part of city. The heat is distributed as hot water to commercial, domestic ( >5000 dwelling) and industrial buildings through 30km of 14" pipes plus a smaller pipe distribution system. To improve the economics, a 6 MW generator is now being added to the system.

  • PDF

Wind profile management and blockage assessment for a new 12-fan Wall of Wind facility at FIU

  • Aly, Aly Mousaad;Chowdhury, Arindam Gan;Bitsuamlak, Girma
    • Wind and Structures
    • /
    • v.14 no.4
    • /
    • pp.285-300
    • /
    • 2011
  • Researchers at the International Hurricane Research Center (IHRC), Florida International University (FIU), are working in stages on the construction of a large state-of-the-art Wall of Wind (WoW) facility to support research in the area of Wind Engineering. In this paper, the challenges of simulating hurricane winds for the WoW are presented and investigated based on a scale model study. Three wind profiles were simulated using airfoils, and/or adjustable planks mechanism with and without grids. Evaluations of flow characteristics were performed in order to enhance the WoW's flow simulation capabilities. Characteristics of the simulated wind fields are compared to the results obtained from a study using computational fluid dynamics (CFD) and also validated via pressure measurements on small-scale models of the Silsoe cube building. Optimal scale of the test model and its optimal distance from the WoW contraction exit are determined - which are two important aspects for testing using an open jet facility such as the WoW. The main objective of this study is to further the understanding of the WoW capabilities and the characteristics of its test section by means of intensive tests and validations at small scale in order to apply this knowledge to the design of the full-scale WoW and for future wind engineering testing.

Wind pressure on a solar updraft tower in a simulated stationary thunderstorm downburst

  • Zhou, Xinping;Wang, Fang;Liu, Chi
    • Wind and Structures
    • /
    • v.15 no.4
    • /
    • pp.331-343
    • /
    • 2012
  • Thunderstorm downbursts are responsible for numerous structural failures around the world. The wind characteristics in thunderstorm downbursts containing vortex rings differ with those in 'traditional' boundary layer winds (BLW). This paper initially performs an unsteady-state simulation of the flow structure in a downburst (modelled as a impinging jet with its diameter being $D_{jet}$) using a computational fluid dynamics (CFD) method, and then analyses the pressure distribution on a solar updraft tower (SUT) in the downburst. The pressure field shows agreement with other previous studies. An additional pair of low-pressure region and high-pressure region is observed due to a second vortex ring, besides a foregoing pair caused by a primary vortex ring. The evolutions of pressure coefficients at five orientations of two representative heights of the SUT in the downburst with time are investigated. Results show that pressure distribution changes over a wide range when the vortices are close to the SUT. Furthermore, the fluctuations of external static pressure distribution for the SUT case 1 (i.e., radial distance from a location to jet center x=$D_{jet}$) with height are more intense due to the down striking of the vortex flow compared to those for the SUT case 2 (x=$2D_{jet}$). The static wind loads at heights z/H higher than 0.3 will be negligible when the vortex ring is far away from the SUT. The inverted wind load cases will occur when vortex is passing through the SUT except on the side faces. This can induce complex dynamic response of the SUT.

Evaluation of Wind-Induced Vibration for Multiple Stacks Using Numerical Analysis (전산 해석을 이용한 다중연돌의 유체유발진동)

  • Yang, Kwangheok;Park, Chaegwan;Kim, Hyeonjoon;Baek, Songyoul;Park, Soontae
    • Plant Journal
    • /
    • v.12 no.3
    • /
    • pp.24-31
    • /
    • 2016
  • Wind-induced vibration is a phenomenon that a struture is oscillated due to wind force such as buffeting, vortex shedding wake and etc., which is one of important characteristics to be considered for design in case that stack has significant slenderness ratio or low natural frequency. International design standards of stack define several criteria for evaluating the suitability of stack design, which describe the required design considerations for each range of design parameters and provide the instruction to verify the stack design against wind-induced vibration simply. However, there is a limitation that they cannot provide quantitative information in case code requirement cannot be satisfied due to constraints of plant space or economical design. In order to overcome the limiation of code, integrated numerical analysis of computational fluid dynamics, harmonic analysis and finite element analysis were proposed to investigate wind-induced vibration for multiple stacks in actual plant. Simulated results of mutual wake interference effect between adjacent stacks were evaluated and compared to the criteria in international standards.

  • PDF

Aerodynamic Approaches for the Predition of Spread the HPAI (High Pathogenic Avian Influenza) on Aerosol (고병원성 조류인플루엔자 (HPAI)의 에어로졸을 통한 공기 전파 예측을 위한 공기유동학적 확산 모델 연구)

  • Seo, Il-Hwan;Lee, In-Bok;Moon, Oun-Kyung;Hong, Se-Woon;Hwnag, Hyun-Seob;Bitog, J.P.;Kwon, Kyeong-Seok;Kim, Ki-Youn
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.1
    • /
    • pp.29-36
    • /
    • 2011
  • HPAI (High pathogenic avian influenza) which is a disease legally designated as an epidemic generally shows rapid spread of disease resulting in high mortality rate as well as severe economic damages. Because Korea is contiguous with China and southeast Asia where HPAI have occurred frequently, there is a high risk for HPAI outbreak. A prompt treatment against epidemics is most important for prevention of disease spread. The spread of HPAI should be considered by both direct and indirect contact as well as various spread factors including airborne spread. There are high risk of rapid propagation of HPAI flowing through the air because of collective farms mostly in Korea. Field experiments for the mechanism of disease spread have limitations such as unstable weather condition and difficulties in maintaining experimental conditions. In this study, therefore, computational fluid dynamics which has been actively used for mass transfer modeling were adapted. Korea has complex terrains and many livestock farms are located in the mountain regions. GIS numerical map was used to estimate spreads of virus attached aerosol by means of designing three dimensional complicated geometry including farm location, road network, related facilities. This can be used as back data in order to take preventive measures against HPAI occurrence and spread.

Design Optimization of a Heat Sink for Mobile Telecommunication Module Satisfying Temperature Limits (온도 제한조건을 고려한 이동통신 모듈의 히트싱크 최적설계)

  • Jeong, Seung-Hyun;Jeong, Hyun-Su;Lee, Yong-Bin;Choi, Dong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.2
    • /
    • pp.183-190
    • /
    • 2011
  • As the number of mobile subscribers has increased recently, the demand for more number of base stations has increased. However, because of the shortage of sites for constructing base stations, a mobile communication module needs to be small in size. To minimize the size of the module, the size of the heat sink attached to the outside of the module should be minimized. Furthermore, the temperature of each electronic component of the module should be lower than the allowable temperature so that thermal stability can be maintained. A commercial PIDO (process integration and design optimization) tool PIAnO and a commercial CFD (computational fluid dynamics) tool FLOTHERM are used to minimize the size of the module while the constraints on the temperatures of the twelve electronic components are satisfied. As a result of design optimization, the volume of the heat sink is reduced by 41.9% while all the constraints on the temperature of the twelve electronic components of the module are satisfied.