• 제목/요약/키워드: CFD(computational fluid dynamics)

검색결과 2,039건 처리시간 0.027초

유압 완층기 내에서의 오일 유동에 대한 CFD 해석 (A CFD Analysis of the Oil Flow in a Hydraulic Shock Absorber)

  • 박경택;박태조
    • 유공압시스템학회논문집
    • /
    • 제5권1호
    • /
    • pp.20-26
    • /
    • 2008
  • Various types of hydraulic shock absorbers are widely used in many fields because of its numerous advantages. However, in order to design adequate damping characteristics, accurate flow data near the orifices are required essentially. In this paper, a commercial computational fluid dynamics(CFD) code, FLUENT is adopted to investigate the flow characteristics near orifices of a shock absorber. Static pressure and velocity vector distributions, fluid path lines are presented for compression/tension strokes and various piston speeds. In order to validate the result of analysis, the numerically obtained damping forces are compared with those of analytical estimations obtained by modified Bernoulli equation. The results reported herein will provide better understanding of the detailed flow fields within shock absorber, and the CFD analysis method proposed in this paper can be used in the design of other types of hydraulic shock absorber.

  • PDF

풍력자원해석 자동화 프로그램 Auto-Wind 개발과 응용 (Development and application of Auto-Wind program for automated analysis of wind resource)

  • 윤성욱;전완호;김현구
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.191-191
    • /
    • 2010
  • As many researchers want to predict or assess more about wind condition and wind power generation, CFD(Computational Fluid Dynamics) analysis method is very good way to do predict or assess wind condition and power generation. But CFD analysis is needed much knowledge of aerodynamics and physical fluid theory. In this paper, Auto-Wind CFD analysis program will be introduced. User does not need specific knowledge of CFD or fluid theory. This program just needs topographical data and wind data for initial condition. Then all of process is running automatically without any order of user. And this program gives for user to select and set initial condition for advanced solving CFD. At the last procedure of solving, Auto-Wind program shows analysis of topography and wind condition of target area. Moreover, Auto-Wind can predict wind power generation with calculation in the program. This Auto-Wind analysis program will be good tool for many wind power researchers in real field.

  • PDF

Numerical Simulation of Turbulence-Induced Flocculation and Sedimentation in a Flocculant-Aided Sediment Retention Pond

  • Lee, Byung Joon;Molz, Fred
    • Environmental Engineering Research
    • /
    • 제19권2호
    • /
    • pp.165-174
    • /
    • 2014
  • A model combining multi-dimensional discretized population balance equations with a computational fluid dynamics simulation (CFD-DPBE model) was developed and applied to simulate turbulent flocculation and sedimentation processes in sediment retention basins. Computation fluid dynamics and the discretized population balance equations were solved to generate steady state flow field data and simulate flocculation and sedimentation processes in a sequential manner. Up-to-date numerical algorithms, such as operator splitting and LeVeque flux-corrected upwind schemes, were applied to cope with the computational demands caused by complexity and nonlinearity of the population balance equations and the instability caused by advection-dominated transport. In a modeling and simulation study with a two-dimensional simplified pond system, applicability of the CFD-DPBE model was demonstrated by tracking mass balances and floc size evolutions and by examining particle/floc size and solid concentration distributions. Thus, the CFD-DPBE model may be used as a valuable simulation tool for natural and engineered flocculation and sedimentation systems as well as for flocculant-aided sediment retention ponds.

CFD 해석을 이용한 실내 온도 최적 측정 위치 선정 방법 (Optimal Measuring Point Selection Method of Indoor Temperature using CFD Analysis)

  • 이민구;정경권
    • 한국정보통신학회논문지
    • /
    • 제16권7호
    • /
    • pp.1559-1566
    • /
    • 2012
  • 본 논문에서는 실거주 환경과 같이 구축된 테스트베드에 온도 센서를 설치하여 최적의 온도 측정 위치를 설정하는 방법을 제안한다. 테스트베드를 CFD(Computational Fluid Dynamics) 방법으로 온도 변화를 시뮬레이션하고, 온도 변화와 기류 변화를 확인하여 최적 온도 측정 위치를 선정한다. 디자인빌더 소프트웨어를 이용하여 테스트베드를 3차원 모델링을 하고 CFD를 실행하였다. 최적위치는 바닥에서 높이 1.5m이고, 온도 변화가 적은 곳을 선택하였다. 실제 공간에 30개의 온습도센서를 설치하여 실험을 진행하였고 온도변화 결과를 확인하였다.

예조건화 Navier-Stokes 코드를 이용한 교각 유동해석 (The analysis of flow over the bridge using preconditioned Navier-Stokes code)

  • 유일용;이승수;박시형
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.13-16
    • /
    • 2008
  • After the collapse of the Tacoma bay bridge at Tacoma Washington, the accurate prediction of aerodynamics became crucial to the sound design of bridges. CFD(Computational Fluid Dynamics) becomes important tool for the prediction on wind effects on the bridge due to the recent development of CFD. The usage of CFD is further prompted by the advantages in using CFD, such as low-cost and fast feed-back of design. In this paper, an unsteady compressible Reynolds averaged Navier-Stokes code is used for the computation of the flow over bridges. Coakley's ��q-${\omega}$ �� two-equation turbulence model is used for the turbulent eddy viscosity. For accurate and stable computations, the local preconditioning method is adapted to the code. Aerodynamic characteristics of a couple bridges are presented to show the validity and the accuracy of the method.

  • PDF

상용 CFD 코드에서 사용되는 촤 반응속도 모델에 대한 이해 (Understanding the Use of Coal Char Kinetic Models in commercial CFD Codes)

  • 김대희;최상민
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2013년도 제46회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.91-94
    • /
    • 2013
  • Commercial computational fluid dynamics (CFD) codes traditionally rely on the computational efficiency of the simplified single-film apparent char kinetic model to predict char particle temperatures and char conversion rates in pulverized coal boilers. The aim of this study is to evaluate the reliability of the single-film apparent kinetic model and to suggest the importance of proper use of this model. For this, a parametric study was conducted with a consideration of main parameters such as Stefan flow, product species, particle evolution, and kinetic parameters.

  • PDF

CFD 해석을 이용한 덕트형 자율무인잠수정의 운동해석 및 설계 최적화에 관한 연구 (A Study on the Motion Analysis and Design Optimization of a Ducted Type AUV (Autonomous Underwater Vehicle) by Using CFD (Computational Fluid Dynamics) Analysis)

  • 정태환;;;이승건
    • 한국해양공학회지
    • /
    • 제23권1호
    • /
    • pp.48-53
    • /
    • 2009
  • Autonomous Underwater Vehicles (AUV's) provide an important means for collecting detailed scientific information from the ocean depths. The hull resistance of an AUV is an important factor in determining the power requirements and range of the vehicle. This paper describes a design method that uses Computational Fluid Dynamics (CFD) to determine the hull resistance of an AUV under development. The CFD results reveal the distribution of the hydrodynamic values (velocity, pressure, etc.) of an AUV with a ducted propeller. This paper also discusses the optimization of the AUV hull profile to reduce the total resistance. This paper demonstrates that shape optimization in a conceptual design is possible by using a commercial CFD package. Optimum design work to minimize the drag force of an AUV was carried out, for a given object function and constraints.

Evaluation of Computational Fluid Dynamics for Analysis of Aerodynamics in Naturally Ventilated Multi-span Greenhouse

  • Lee, In Bok;Short, Ted H.;Sase, Sadanori;Lee, Seung Kee
    • Agricultural and Biosystems Engineering
    • /
    • 제1권2호
    • /
    • pp.73-80
    • /
    • 2000
  • Aerodynamics in a naturally ventilated multi-span greenhouse with plants was analyzed numerically by the computational fluid dynamics (CFD) simulation. To investigate the potential application of CFD techniques to greenhouse design and analysis, the numerical results of the CFD model were compared with the results of a steady-state mass and energy balance numerical model. Assuming the results of the mass and energy balance model as the standard, reasonably good agreement was obtained between the natural ventilation rates computed by the CFD numerical model and the mass and energy balance model. The steady-state CFD model during a sunny day showed negative errors as high as 15% in the morning and comparable positive errors in the afternoon. Such errors assumed to be due to heat storage in the floor, benches, and greenhouse structure. For a west wind of 2.5 m s$^{-1}$ , the internal nonporous shading screens that opened to the east were predicted to have a 15.6% better air exchange rate than opened to the west. It was generally predicted that the presence of nonporous internal shading screens significantly reduced natural ventilation if the horizontal opening of the screen for each span was smaller that the effective roof vent opening.

  • PDF

Effects of upstream two-dimensional hills on design wind loads: A computational approach

  • Bitsuamlak, G.;Stathopoulos, T.;Bedard, C.
    • Wind and Structures
    • /
    • 제9권1호
    • /
    • pp.37-58
    • /
    • 2006
  • The paper describes a study about effects of upstream hills on design wind loads using two mathematical approaches: Computational Fluid Dynamics (CFD) and Artificial Neural Network (NN for short). For this purpose CFD and NN tools have been developed using an object-oriented approach and C++ programming language. The CFD tool consists of solving the Reynolds time-averaged Navier-Stokes equations and $k-{\varepsilon}$ turbulence model using body-fitted nearly-orthogonal coordinate system. Subsequently, design wind load parameters such as speed-up ratio values have been generated for a wide spectrum of two-dimensional hill geometries that includes isolated and multiple steep and shallow hills. Ground roughness effect has also been considered. Such CFD solutions, however, normally require among other things ample computational time, background knowledge and high-capacity hardware. To assist the enduser, an easier, faster and more inexpensive NN model trained with the CFD-generated data is proposed in this paper. Prior to using the CFD data for training purposes, extensive validation work has been carried out by comparing with boundary layer wind tunnel (BLWT) data. The CFD trained NN (CFD-NN) has produced speed-up ratio values for cases such as multiple hills that are not covered by wind design standards such as the Commentaries of the National Building Code of Canada (1995). The CFD-NN results compare well with BLWT data available in literature and the proposed approach requires fewer resources compared to running BLWT experiments.

입자 추적 기법을 활용한 에어로졸 제트 프린팅 공정의 분사 특성에 대한 CFD 해석적 분석 (CFD Analytical Analysis of Jetting Characteristics in Aerosol Jet Printing Process Using Particle Tracking Technique)

  • 정상민;박승운;최의근;오수빈;이철희
    • 드라이브 ㆍ 컨트롤
    • /
    • 제21권1호
    • /
    • pp.8-15
    • /
    • 2024
  • This thesis investigates the jetting characteristics of an aerosol jet printing (AJP) process as a function of design and operating conditions. The governing equations of the AJP system are derived for experimentation and analysis. To understand the characteristics of the AJP system, it analyzes the jetting characteristics as a function of the flow rate of the carrier gas and the sheath gas, and the variation of the linewidth with the nozzle exit size based on particle tracking. The thesis focuses on computational fluid dynamics (CFD), which is a computer simulation. The particle tracking results obtained by CFD were analyzed using MATLAB. CFD analytical models can be analyzed in environments with different conditions and consider more specific situations than mathematical computational models. The validity of the CFD analysis is shown by comparing the experimental results with the CFD analysis.