• 제목/요약/키워드: CFD(Computer Fluid Dynamic)

검색결과 14건 처리시간 0.027초

습식 배연탈황 시스템의 효율 향상을 위한 전산해석 (Computational Fluid Dynamic Analysis for Improving the Efficiency of Desulfurization System for the Wet Flue Gas)

  • 황우현;이경옥
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권2호
    • /
    • pp.161-171
    • /
    • 2014
  • 본 논문에서는 CFDRC 사의 상용 CFD 소프트웨어인 CFD-ACE+로 전산유체역학 기법을 적용하여 수치 해석을 수행하여 배연탈황 설비에서 Induced Draft Fan(I.D.Fan) 출구부터 Booster Up Fan(B.U.Fan) 입구까지 난류 유동장과 연소 유동 문제를 모사하여 배기가스 계통 설비의 유동 특성을 해석하였다. 배기가스가 I.D.Fan 출구 ~ B.U.Fan 입구 구간을 적정속도로 균일하게 유동하여 B.U.Fan로 균일하게 유입되도록 하며 압력손실이 적게 발생하도록 설계기준 보일러 부하와 최대연속 정격유량의 보일러 부하에서 이 구간의 안내깃을 검토하였다. 검토한 결과에 대해 CFD 해석을 수행하여 I.D.Fan 출구에서 안내깃을 제거하고 B.U.Fan 입구 전에 안내깃을 보강할 수 있도록 설계를 변경하였다. 배기가스 계통에 변경된 설계를 적용하여 수치모사한 결과에서 배연탈황 설비 내부의 배기가스 압력손실이 줄어들고 유속과 유선이 균일하게 유동할 수 있어 배연탈황 시스템의 효율이 향상한 것을 확인하였다.

오일러 방정식 및 저차모델링 기법을 활용한 천음속 플러터 해석 (Transonic Flutter Analysis Using Euler Equation and Reduced order Modeling Technique)

  • 김동현;김요한;김명환;류경중;황미현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 춘계학술대회 논문집
    • /
    • pp.339-344
    • /
    • 2011
  • In the past much effort has been made to utilize advanced computational fluid dynamic (CFD) programs for aeroelastic simulations and analysis. However, it is limited in the field of unsteady aeroelasticity due to enormous size of computer memory and unreasonably long CPU time. Recently, AAEMS(Aerodynamics is Aeroelasticity minus Structure) was developed for linear time-invariant, coupled fluid-structure systems. In this paper, to demonstrate further the efficiency and accuracy of the new model reduction method, we successfully examine AGARD 445.6 wing modeled by FLUENT CFD, FSIPRO3D and NASTRAN FEM(Finite Element Method) programs. Using the ROM(Reduced Order Modeling) one can predict flutter boundary as a function of the dynamic pressure.

  • PDF

로터 회전 및 타워의 탄성력을 고려한 MW 급 풍력발전기의 비선형 다물체 동적 응답 해석 (Multi-Body Dynamic Response Analysis of a MW-Class Wind Turbine System Considering Rotating and Flexibility)

  • 김동만;김동현;김요한;김수현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.78-83
    • /
    • 2009
  • In this study, computer applied engineering (CAE) techniques are fully used to conduct structural and dynamic analyses of a whole huge wind turbine system including composite blades, tower and nacelle. For this study, computational fluid dynamics (CFD) is used to predict aerodynamic loads of the rotating wind-turbine blade model. Multi-body dynamic structural analyses are conducted based on the non-linear finite element method (FEM) by using super-element method for composite laminates blade. Three-dimensional finite element model of a wind turbine system is constructed including power train(main shaft, gear box, coupling, generator), bedplate and tower. The results for multi-body dynamic simulations on the wind turbine's critical operating conditions are presented in detail.

  • PDF

회전 및 풍하중 가진 효과를 고려한 대형 풍력발전 로터의 효율적인 슈퍼요소 구조진동해석 (Efficient Super-element Structural Vibration Analyses of a Large Wind-turbine Rotor Blade Considering Rotational and Aerodynamic Load Effects)

  • 김동만;김동현;박강균;김유성
    • 한국소음진동공학회논문집
    • /
    • 제19권7호
    • /
    • pp.651-658
    • /
    • 2009
  • In this study, computer applied engineering(CAE) techniques are fully used to efficiently conduct structural and dynamic analyses of a huge composite rotor blade using super-element. Computational fluid dynamics(CFD) is used to predict aerodynamic loads of the rotating wind-turbine blade. Structural vibration analysis is conducted based on the non-linear finite element method for composite laminates and multi-body dynamic simulation tools. Various numerical results are presented for comparison and the structural dynamic behaviors of the rotor blade are investigated herein.

수중로봇 제어 시뮬레이션을 위한 유체저항계수 연구 (Study on the fluid resistance coefficient for control simulation of an underwater vehicle)

  • 박상욱;김민수;손정현;백운경
    • 동력기계공학회지
    • /
    • 제20권1호
    • /
    • pp.24-29
    • /
    • 2016
  • Remotely operated vehicles or autonomous underwater vehicles have been used for exploiting seabed natural resources. In this study, the autonomous underwater vehicle of hovering type(HAUV) is developed to observe underwater objects in close distance. A dynamic model with six degrees of freedom is established, capturing the motion characteristics of the HAUV. The equations of motion are generated for the dynamic control simulation of the HAUV. The added mass, drag and lift forces are included in the computer model. Computational fluid dynamics simulation is carried out using this computer model. The drag coefficients are produced from the CFD.

CFD 기반의 비선형 초탄성 재료의 구조 설계 (The Structural Design for Nonlinear Hyperelastic Materials Based on CFD)

  • 정대석;김지영;이종문;박영철
    • 대한기계학회논문집A
    • /
    • 제30권4호
    • /
    • pp.379-386
    • /
    • 2006
  • The hyper-elastic material has been used gradually and its range was extended all over the industry. The performance prediction of hyper-elastic material was required not only experimental methods but also numerical methods. In this study, we presented the process how to use numerical method for hyper-elastic material and applied it to seat-ring of butterfly valve. The finite element analysis was executed to evaluate the mechanical characteristics of hyper-elastic material. And the optimum model considered conditions and features. According to that model, the load conditions were obtained by using CFD analysis.

독립공리 설계기법을 이용한 LCD 세정노즐의 최적설계 (Optimal Design of Water Jet Nozzles Utilizing Independence Design Axiom)

  • 신현석;이종수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1240-1247
    • /
    • 2003
  • Water jet nozzle for LCD has been used as a wet cleaning process in many industries. It is necessary for the nozzle to consider cleaning effect and flux. In this paper, we applied the bubble dynamic theory(Rayleight-Plesset equation) to improve the cleaning efficiency. Generally, Rayleigh-Plesset equations for cavitation bubbles are used in analyzing computer simulation for caviting flows. Burst of bubbles causes potential energies and we can use these energies to remove organic and inorganic compounds on the LCD. Therefore, it is necessary to analyze the bubble generations and axiomatic design by computational fluid dynamics(CFD). By comparing the weight matrix of neural networks to the design matrix of axiomatic design, we propose methods to verify designs objectively. The optimal solution could be deduced by the regression analysis using the design parameters.

  • PDF

고무 압출성형 공정에 대한 유한요소 해석 (Finite Element Analysis of Rubber Extrusion Forming Process)

  • 하연식;조진래;김태호;김준형
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.762-767
    • /
    • 2007
  • As a macromolecule material, melted rubber flow shows characteristics of shear thinning fluid. The dynamic viscosity of this rubber fluid is influenced by temperature and shear strain rate. In this study, the numerical simulation of rubber extrusion forming process has been performed using commercial CFD code, Polyflow. Power-law model considering the effect of shear rate is used for the computer simulation of this non-Newyonian flow. Also Non-isothermal behavior is considered as Arrhenius-law model. Distributions of velocity and temperature are predicted through the simulation.

  • PDF

전교통동맥 모형을 이용한 자기공명혈관촬영술의 신호 불균일에 관한 실험적 연구 (An Experimental Study on the Cause of Signal Inhomogeneity for Magnetic Resonance Angiography Using Phantom Model of Anterior Communicating(A-com) Artery)

  • 유병규;정태섭
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제25권1호
    • /
    • pp.55-62
    • /
    • 2002
  • Aneurysm-mimicking findings were frequently visualized due to hemodynamical causes of dephasing effects around area of A-com artery during magnetic resonance angiography(MRA) and these kind of phenomena have not been clearly known yet. We investigated the hemodynamical patterns of dephasing effect around area of the A-com artery that might be a cause of false intracranial aneurysms on MRA. For experimental study, We used hand-made silicon phantoms of the asymmetric A-com artery as like a bifurcation configuration. In a closed circulatory system with UHDC computer driven cardiac pump system. MRA and fast digital subfraction angiography(DSA) involved the use of these phantoms. Flow patterns were evaluated with axial and coronal imaging of MRA(2D-TOF, 3D-TOF) and DSA of Phantoms constructed from an automated closed-type circulatory system filled with glycerol solution [circulation fluid(glycerol:water = 1:1.4)]. These findings were then compared with those obtained from computational fluid dynamic(CFD) for inter-experimental correlation study. Imaging findings of MRA, DSA and CFD on inflow zone according to the following: a) MRA demonstrated high signal intensity zone as inflow zone on silicon phantom; b) Patterns of DSA were well matched with MRA on trajectory of inflow zone; and c) CFD were well matched with MRA on the pattern of main flow. Imaging findings of MRA. DSA and CFD on turbulent flow zone according to the following: a) MRA demonstrated hyposignal intensity zone at shoulder and axillar zone of main inflow; b) DSA delineated prominent vortex flow at the same area. The hemodynamical causes of signal defect, which could Induce the false aneurysm on MRA, turned out to be dephasing effects at axilla area of bifurcation from turbulent flow as the results of MRA, DSA and CFD.

  • PDF

댐의 심층저온수 취수시 수온 성층화 유지 조건에 대한 CFD를 이용한 분석 (Analysis of the Water Temperature Stratification-Maintaining Conditions Using CFD in Case of Intake of Deep, Low-Temperature Water)

  • 이진성;조수;심경종;장문성;손장열
    • 한국태양에너지학회 논문집
    • /
    • 제29권2호
    • /
    • pp.31-38
    • /
    • 2009
  • This study was conducted to forecast inner water temperature strata change by extracting deep water from a dam. For the methodology, the scope wherein the balance between the volume of low-temperature water intake through the virtual water intake opening as installed within the stored water area and the volume of water intake from the surrounding area is not destroyed was calculated through the CFD simulation technique using the computational fluid dynamics(CFD) interpretation method. This study suggested a supplementary method(diffuser) to avoid destroying the water temperature strata, and the effect was reviewed. In case of intake of the same volume, when the velocity of flow of water intake is reduced by increasing the pipe diameter, the destruction of water temperature strata can be minimized. When the area(height) where the intake of water is possible is low, a diffuser for interrupting the vertical direction inflow should be installed to secure favorable water intake conditions in case of water intake on the upper part. This study showed that there was no problem if the intake-enabled, low-temperature area was secured approximately 10m from the bottom when the scope that does not destroy the water temperature strata in case of water intake was forecast using the regression formula.