• Title/Summary/Keyword: CF/PP composites

Search Result 6, Processing Time 0.019 seconds

Preparation and characteristics of PP/CF/MWCNT nanocomposites (PP/CF/ MWCNT 나노복합체의 제조 및 특성평가)

  • Kim, Seung-Beom;Nam, Byeong-Uk;Lee, Kyu-Mann
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.1
    • /
    • pp.107-111
    • /
    • 2011
  • Polypropylene(PP)/carbon fiber(CF)/multi-walled carbon nanotube(MWCNT) nanocomposites along with various CF and MWCNT contents were prepared in a Twin screw extruder. Electrical, mechanical property and morphology were investigated with a variation of CF and MWCNT contents. From the surface resistance of PP/CF/MWCNT composites, MWCNT can increase the conductivity of composites compared with PP/CF composites without MWCNT. It is suggested that MWCNT and CF can make the conductive network in the polymer matrix. Flexural modulus and Izod impact strength of the PP/CF/MWCNT composites were improved with the increase of CF contents. Morphology showed that length of CF in polymer matrix was shortened by torque during melt mixing with MWCNT. As a result of this phenomenon, the impact strength of composites was somewhat decreased.

Investigation of Mechanical Property of Polypropylene and CF/PP Composites with Number of Recycle (재활용 횟수에 따른 폴리프로필렌 및 탄소섬유 강화 PP 복합재료의 물성 변화 관찰)

  • Kwon, Dong-Jun;Wang, Zuo-Jia;Lea, Tea-Ung;Park, Joung-Man
    • Composites Research
    • /
    • v.26 no.5
    • /
    • pp.303-308
    • /
    • 2013
  • Carbon fiber (CF) reinforced polypropylene (PP) compositeis was increased to amount consumed. In this study, recycle of composites by recycle times. CF was containing 20%. Mechanical and interfacial propertis of CF/PP was evaluation for number of recycle time. Mechanical assessment of CF/PP was tension, bending, fatigue tension test and izod test method. Interfacial assessment of CF/PP was wettability test and FE-SEM of fracture surface method. Fiber and matrix was changed to recycle time. The more recycle of CF/PP, the more interfacial bonding was decreased. Because fiber and matrix was damaged to thermal damage. And then reinforced CF was shorter than original shape.

Evaluation of Fiber Arrangement Condition of CF/PP Composites Using Electrical Resistance Measurement and Wettability (전기저항 평가법 및 접촉각을 이용한 CF/PP 복합재료 사출성형품 섬유 배열성 평가)

  • Kwon, Dong-Jun;Shin, Pyeong-Su;Kim, Jong-Hyun;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.17 no.1
    • /
    • pp.15-20
    • /
    • 2016
  • Fiber arrangement was important for fiber reinforced thermoplastic composites using injection fabrication. In this work, fiber arrangement in CF/PP was investigated to use electrical resistance (ER) method during injection times. There were 3 types of injection products of CF/PP with different ER change ratio by fiber arrangement. High ER change ratio case of injection CF/PP products had better increased tensile strength. This reason was due to the fiber arrangement of CF/PP by injection. Fractured surface and contact angle of CF/PP products were used to evaluate for injection product quality. Uniform fiber arrangement of CF/PP by injection type exhibited the uniform heat condition of melted CF/PP. Steady thermal transfer effect occurred from melted CF/PP to steel injection mold. Steady thermal transfer effect of CF/PP was transmitted to high ER change ratio of mold. Ultimately, good condition CF/PP product by injection molding method could be predicted by using ER method.

A Study of Damage Sensing and Repairing Effect of CNT Nanocomposites (손상감지용 CNT 나노복합재료의 손상 감지능 및 보강효과 연구)

  • Kwon, Dong-Jun;Wang, Zuo-Jia;Choi, Jin-Young;Shin, Pyeong-Su;Park, Joung-Man
    • Composites Research
    • /
    • v.27 no.6
    • /
    • pp.219-224
    • /
    • 2014
  • Nancomposites manufacture has been developed rapidly, because of reinforcing effects of CNT in terms of mechanical, electrical and thermal properties. In this study, 10 wt% CNT paste was fabricated with good dispersion state and easy processability. Damage sensing and reinforcing effect of CNT paste were investigated in nanocomposites. 10 wt% CNT paste exhibited better tensile and flexural properties than those of general 1 wt% CNT nanocomposites. To observe the healing effect of CNT paste, a crack was made artificially with 30wt% CF30wt%/PP composites, and the CNT paste was filled inside the crack. The damage sensing of CNT paste in CF30wt%/PP composites was investigated by electrical resistance measurement and mechanical tests. CNT paste exhibited good reinforcing effect in mechanical properties of CF30wt%/PP composites, and this reinforcing effect was getting better with larger cracks. The reason was because CNT paste had good interfacial adhesion with CF30wt%/PP composites to resist crack propagation. In electrical resistance measurement, there was a jump in electrical resistance signal at the adhesion interface. The jumping signal could be used to predict fracture of CF/PP composites. CNT nanocomposites for damage sensing had crack reducing effect and damage detection using electrical resistance method.

Effects of maleic anhydride content on mechanical properties of carbon fibers-reinforced maleic anhydride-grafted-poly-propylene matrix composites

  • Kim, Hyun-Il;Han, Woong;Choi, Woong-Ki;Park, Soo-Jin;An, Kay-Hyeok;Kim, Byung-Joo
    • Carbon letters
    • /
    • v.20
    • /
    • pp.39-46
    • /
    • 2016
  • In this work, the effects of maleic anhydride (MA) content on mechanical properties of chopped carbon fibers (CFs)-reinforced MA-grafted-polypropylene (MAPP) matrix composites. A direct oxyfluorination on CF surfaces was applied to increase the interfacial strength between the CFs and MAPP matrix. The mechanical properties of the CFs/MAPP composites are likely to be different in terms of MA content. Surface characteristics were observed by scanning electron microscope, Fourier transform infrared spectroscopy, and single fiber contact angle method. The mechanical properties of the composites were also measured by a critical stress intensity factor (KIC). From the KIC test results, the KIC values were increased to a maximum value of 3.4 MPa with the 0.1 % of MA in the PP, and then decreased with higher MA content.

Studies on the Oxygen Permeability and It's Proofness of the Various Commercial Polymer Films (상업용 고분자 필름의 산소투과도 및 산소투과 방지도에 관한 연구)

  • Suh, Hwan-Kyu;Kim, Joon-Soo;Lee, Jung-Keun
    • Elastomers and Composites
    • /
    • v.15 no.1
    • /
    • pp.3-9
    • /
    • 1980
  • The oxygen permeability and it's proofness of te various commercial polymer films have been investigated at the constant pressure and temperature. Oxygen proofness, the reciprocals of the oxygen permeability for the various samples, were determined by means of a coulometric oxygen permeability tester. The testing of sample films was performed at constant temperature $(23{\pm}1^{\circ}C)$ under 1 atm. for 24 hours. The order of the relative proofness observed are as follows; oriented Nylon (O. Nylon)> oriented Polyester (O. PET)>nonoriented Nylon (N. Nylon)>nonoriented Polyester (N.PET)> rigid Polyvinyl chloride (Rigid PVC)>semirigid Polyvinyl chloride (Semirigid PVC)> oriented Polypropylene (O. PP)>plasticized Polyvinyl chloride (P. PVC)> casted Polypropylene (C. PP)> low density Polyethylene (LDPE)>high density Polyethylene (HDPE, Inflation)> high density-polyethylene (HDPE, T-die) The oxygen proofness of the films was increased with the polarity cf polymer, the film thickness and mechanical orientation and decreased with the addition of plasticizer in PVC. For the use of wrapping materials, one film with the polar property in the main chain of the polymer molecule and the others with nonpolar property in it are laminated for the protection from oxygen and moisture.

  • PDF