• Title/Summary/Keyword: CENTER OF GRAVITY

Search Result 884, Processing Time 0.025 seconds

Measurement of Gravity Center for Rotor Blades by Compensation of Machining Error in Jig (지그의 가공오차 보정에 의한 블레이드 무게 중심 측정)

  • Kong, Jae-Hyun;Kim, Ki-Sung;Ye, Sang-Don;Chun, See-Young;Hur, Kwan-Do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.12
    • /
    • pp.41-47
    • /
    • 2010
  • There are many unbalanced models such as helicopter's rotor blades, small-sized precision motor in industrial applications. In the real products, their gravity center usually does not accord with the desired gravity center. If the deviation is large between them, it can be a major cause of vibration and noise as the part of model rotate. Therefore the gravity center in the rotational parts should be controlled properly because of static and dynamic balancing of the parts. In the research, the rotor blade of unmanned helicopter has been selected to obtain the high quality of balancing. In order to achieve the purpose, measuring system has been developed. In the system applied principle is three point weighting method, which is one of the Multiple-point Weighting Method. It has circle fitting for compensation of machining error, after measuring the values. From this study, the results showed that the proposed measurement procedure gives reliable and precise gravity center.

Improvement of Earth Gravity Field Maps after Pre-processing Upgrade of the GRACE Satellite's Star Trackers

  • Ko, Ung-Dai;Wang, Furun;Eanes, Richard J.
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.4
    • /
    • pp.353-360
    • /
    • 2015
  • Earth's gravity field recovery was improved after the pre-processing upgrade of the Gravity Recovery And Climate Experiments (GRACE) satellite's star trackers. The star tracker measurements were filtered with a tighter low-pass filtering of 0.025Hz cutoff frequency, instead of a nominal filtering of 0.1Hz cutoff frequency. In addition, a jump removal algorithm was applied to remove discontinuities, due to direct Sun and/or Moon interventions, in the star tracker measurements. During the K-Band Ranging (KBR) calibration maneuvers, large attitude variations could be detected concurrently by both of the star trackers and the accelerometer. The misalignment angles of star trackers between the true frame and the normal frame could be determined by comparing measurements from these sensors. In this paper, new Earth' gravity field maps were obtained using above improvement. Based on comparisons to nominal Earth's gravity field maps, the new Earth's gravity field maps were found better than the nominal ones. Among the applied methods, the misalignment calibration of the star trackers had a major impact on the improvement of the new Earth's gravity field maps.

A Study on the Analysis of Measurement Errors of Specific Gravity Meter (기준 밀도계의 측정 오차 분석에 관한 연구)

  • Lee, Kang-Jin;Her, Jae-Young;Ha, Young-Cheol;An, Seung-Hee;Lee, Seung-Jun;Lee, Cheol-Gu
    • Korean Chemical Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.676-680
    • /
    • 2002
  • The specific gravity meter is the instrument used to measure the density of fluids under the reference conditions and it can be widely used in industrial areas, especially in massive flow rate natural gas industry. This study has been carried out in an attempt to improve measurement accuracy of natural gas flow rate calculation, providing the adequate installation and proper operation conditions of specific gravity meter. The test results are 1) the density measurement errors in case of using methane and standard gas as calibration gases are smaller than using methane and nitrogen gas, 2) the periodical calibration to maintain accurate density measurements is essential, and 3) the specific gravity meter is sensitive to changes of environmental conditions, especially environmental temperature surrounding the specific gravity meter.

A Study on the Effects of Creative STEAM System Given by Center of Gravity Experiment (창의적 융합교육을 위한 무게중심 프로그램 개발과 적용사례 연구)

  • Kim, Su Geum;Ryu, Shi Kyu;Kim, Sun Bae
    • Journal of Educational Research in Mathematics
    • /
    • v.24 no.3
    • /
    • pp.333-357
    • /
    • 2014
  • This study resulted from a study regarding creative STEAM System based upon an experiment with the center of gravity. The results of the study are constructed by a fusion of mathematics and physics, showing that they are the same as mathematical calculations. Also, students can find that center of gravity of an object is in equilibrium on a metal rod when the center of gravity exactly is placed on the rod. The fact that an experimental results are correspond to calculations can maximize the effectiveness of teaching. And also this study has the following effectiveness. First, the exact construction and calculations arouses good competition among students. Second, this experiment can give students a motivation for study and increase their thinking in classes because the theoretical background of center of gravity experiment is basically attributed to math and science classes in school. This study includes three different types of center-of-gravity experiments. One is a simple type of experiment in which center of gravity exists inside of an object. Another is a complicated one in which the center of gravity is also inside of an object. However, the third type is an experiment in where the center of gravity is outside of an object. Therefore, it gives students an opportunity to discuss how to confirm equilibrium on a metal rod when the object has its center of gravity outside. Having discussions in class will allow students to have a critical way of thinking. In addition, searching for a way to solve a problem will increase creativity of students as well. And the last type is finding the center of gravity of a big acrylic panel where multiple objects are on the panel. According to the survey and interview conducted by students who participated in this program, teaching based on creative STEAM system helps students to get a better understanding and more fast acquisition of knowledge. We can expect that a well-planned creative STEAM system through a continuous study will be both effective and efficient in educating critical and creative students.

  • PDF

Comparative research on gravity load simulation devices for structural seismic tests based on FEA

  • Yonglan Xie;Songtao Yan;Yurong Wang;Shuwei Song
    • Structural Monitoring and Maintenance
    • /
    • v.11 no.3
    • /
    • pp.235-246
    • /
    • 2024
  • Structural seismic tests usually need to simulate the gravity load borne by the structure, the gravity load application devices should keep the force value and direction unchanged, and can adapt to the structural deformation. At present, there are two main ways to simulate gravity load in laboratory: roller group and prestress. However, there are few differential analysis between these two ways in the existing experimental studies. In this paper, the simulation software ABAQUS is used to simulate the static pushover analysis of reinforced concrete column and frame, which are the most common models in structural seismic tests. The results show that the horizontal restoring force of the model using prestressed loading method is significantly greater than roller group, and the difference between the two will increase with the increase of the horizontal deformation. The reason for the difference is that the prestressed loading method does not take the adverse effects of gravity second-order effect (P-Delta effect) into account. Therefore, the restoring force obtained under prestressed loading method should be corrected and the additional shear force caused by P-Delta effect should be deducted. After correction, the difference of restoring force between the two gravity load application methods is significantly reduced (when storey-drift is 1/550, the relative error is within 1%; and when storey-drift is 1/50, the relative error is about 3%). The research results of this research can provide reference for the selection and data processing of gravity load simulation devices in structural seismic tests.

Geometrically Invariant Image Watermarking Using Connected Objects and Gravity Centers

  • Wang, Hongxia;Yin, Bangxu;Zhou, Linna
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2893-2912
    • /
    • 2013
  • The design of geometrically invariant watermarking is one of the most challenging work in digital image watermarking research area. To achieve the robustness to geometrical attacks, the inherent characteristic of an image is usually used. In this paper, a geometrically invariant image watermarking scheme using connected objects and gravity center is proposed. First, the gray-scale image is converted into the binary one, and the connected objects according to the connectedness of binary image are obtained, then the coordinates of these connected objects are mapped to the gray-scale image, and the gravity centers of those bigger objects are chosen as the feature points for watermark embedding. After that, the line between each gravity center and the center of the whole image is rotated an angle to form a sector, and finally the same version of watermark is embedded into these sectors. Because the image connectedness is topologically invariant to geometrical attacks such as scaling and rotation, and the gravity center of the connected object as feature points is very stable, the watermark synchronization is realized successfully under the geometrical distortion. The proposed scheme can extract the watermark information without using the original image or template. The simulation results show the proposed scheme has a good invisibility for watermarking application, and stronger robustness than previous feature-based watermarking schemes against geometrical attacks such as rotation, scaling and cropping, and can also resist common image processing operations including JPEG compression, adding noise, median filtering, and histogram equalization, etc.

Geoid of Western Mongolia from airborne gravity data 2004

  • Forsberg, Rene;Olesen, A.;Dalkhaa, Munkhtsetseg;Begzsuren, Amarzaya
    • 한국지형공간정보학회:학술대회논문집
    • /
    • 2005.08a
    • /
    • pp.93-99
    • /
    • 2005
  • This paper summarizes a preliminary geoid computation for western Mongolia, utilizing the airborne data collected fall 2004, as part of the NGA-DNSC-ALAGaC-MonMap cooperative airborne gravity project. A gravimetric geoid has been computed using the airborne gravity data, SRTM terrain models and GRACE/EGM global fields. The gravimetric geoid has subsequently been fitted to GPS-leveling data across Western Mongolia, as well as for a special Ulaanbaatar city geoid model.

  • PDF

Design of an Augmented State Feedback Controller for a Wheeled Inverted Pendulum Returning to the Origin (원점 복귀 가능한 차륜형 역진자 제어를 위한 확장 상태피드백 제어기 설계)

  • Lee, Se-Han
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.4
    • /
    • pp.317-322
    • /
    • 2011
  • An augmented state feedback controller for a Wheeled Inverted Pendulum (WIP) is proposed in this research. The augmented state feedback controller is able to keep the WIP returning to the origin. Generally, the WIP has both stable and unstable equilibrium points. To keep the WIP over the unstable equilibrium point, the WIP consistently is being controlled. A simple state feedback controller is letting the WIP out of the origin when the center of gravity of the WIP locates out of the schematic center line. In some case of applications, it may not be desirable that the WIP is drifting out of the initial location. The proposed augmented state feedback controller is able to keep the WIP at the initial location whether its center of gravity lies out of the center line or not. Numerical simulations are carried out to show the validation of the augmented sated feedback controller.

Study on a Center of Gravity of Polygon as an Enriched Learning Topic for the Gifted in Mathematics (수학 영재의 심화학습을 위한 다각형의 무게중심 연구)

  • Kim, Sun-Hee;Kim, Ki-Yeon
    • Journal of Educational Research in Mathematics
    • /
    • v.15 no.3
    • /
    • pp.335-352
    • /
    • 2005
  • In this paper, we consider a center of gravity of convex polygon which could be an enriched topic for the gifted in mathematics(7th grades) and suggested a case that the gifted experienced a center of gravity. Based on properties of Archimedes' center of mass, we define it as a point which make a polygon be in counterpoised with its area and explain how to find that point through using integral calculus or internal division. Then we consider that the gifted would experience various kinds of mathematical thinking and apply diverse ways of problem solving 3s searching for this topic. As this research, the teacher would be able to conduct the gifted with penetration into center of gravity and to let them participate in advanced learning courses which value ma-thematical thinking while they undergo similar experiences such as mathematicians.

  • PDF