• Title/Summary/Keyword: CELL/NATURE/SCIENCE

Search Result 169, Processing Time 0.033 seconds

Ecosystem Service Matrix applying to Baekdu-daegan Songnisan and Hannamgeumbukjeongmaek Boeun-gun area (백두대간 속리산 권역 및 한남금북정맥 보은군 권역에 대한 생태계 기능 산정 매트릭스 방법의 적용)

  • Kim, Sung-Yeol;Moon, Geon-Soo;Kim, Su-Jin;Kwon, Hyuksoo;Choi, Jaeyong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.25 no.6
    • /
    • pp.13-24
    • /
    • 2022
  • The purpose of this study is to evaluate the applicability of Ecosystem Service Matrix method in Songnisan and Hannamgeumbukjeongmaek Boeun-gun area. The assessment was carried out with 25 land cover types by 7 ecosystem values. The research area was divided by 30m x 30m cell unit and the each cell value was classified into 5 grades. The total number of cell under the investigation was 433,910 units in Songnisan and 84,975 in Boeun-gun. Class I and II area were widely spread and Class V area is narrowly distributed inside of Class III area in Songnisan. I area, II area and separately managed zone belong to Ecological Zoning map and Environmental Conservation Value Assessment Map(Environment + Ecology) were assessed Class I in Ecosystem service matrix. In conclusion, Ecosystem Service Matrix assessment based on land cover map is a rapid assessment methodology which reflecting ecosystem functions in a larger area. If it is supported with more ecosystem functions, the more precise nature value can be calculated.

Effect of Bu-Zhong-Yi-Qi-Tang on B Cell Development (보중익기탕(補中益氣湯)의 B세포 분화 유도 효과)

  • 신성해;채수연;하미혜;조성기;김성호;변명우;이성태
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.2
    • /
    • pp.271-277
    • /
    • 2004
  • This study was designed to evaluate the effect of Bu -Zhong-Yi-Qi-Tang extracts, a prescription of traditional oriental medicine, on development of the B cells. In the bone marrow cell cultures, progenitors viability, expressions of particular cell- surface proteins and production of immunoglobulins were investigated in the presence of Bu-Zhong-Yi-Qi-Tang extracts. The administration of Bu-Zhong -Yi-Qi-Tang polysaccharide fraction increased the viable cell numbers of the precursor B cells, and elevated expression levels of CD19/CD40 specific for pre-B cells after 10 days culture were demonstrated by flow cytometry analysis. The production of immunoglobulin M in the presence of polysaccharide fraction increased progressively in the culture supernatant, and preferentially induced class switching to IgG1, IgG2a and IgG3. These results indicated that Bu -Zhong -Yi-Qi -Tang strong1y correlated with the development of precursor B cells in the bone marrow cell culture. Therefore the polysaccharide fraction of Bu-Zhong-Yi -Qi-Tang might be a useful radioprotector, especially since it is a relatively non-toxic natural product. Further studies are needed to better characterize the protective nature of Bu-Zhong-Yi -Qi -Tang extract.

Prospects for Immunological Intervention for Coccidiosis (닭 콕시듐병의 면역학적 접근에 대한 전망)

  • Lillehoj, H.S.
    • Korean Journal of Poultry Science
    • /
    • v.19 no.3
    • /
    • pp.161-176
    • /
    • 1992
  • Coccidiosis is caused by Eimeria infecting primarily the intestine of the susceptible host, thereby seriously impairing the growth and feed utilization of livestock and poultry. The genus Eimeria contains a number of obligate intracellular protozoan parasites with a complicated life-cycle involving both asexual and sexual stages of development. The desire to develop a vaccine against Eimeria has Promoted active research to elucidate the mechanisms of protective immunity and identification of candidate vaccine antigens. Protozoa are unique in their modes of transmission and nature of disease manifestations, the significance of which should be considered in the development of a control strategy. An intricate and complex interplay of different cell populations and cytokines is involved not only in the pathogenesis of coccidiosis but also in the development of protective immunity Thus, comprehensive understanding of the events leading to protection following Eimeria infection will be crucial for the development of an effective vaccine.

  • PDF

Biotransformation of Flavonoids with O-Methyltransferase from Bacillus cereus

  • Lee Yoon-Jung;Kim Bong-Gyu;Park Young-Hee;Lim Yoong-Ho;Hur Hor-Gil;Ahn Joong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.7
    • /
    • pp.1090-1096
    • /
    • 2006
  • O-Methylation is a common modification reaction found in nature, and is mediated by an O-methyltransferase (OMT). OMTs have been mainly studied in plants, whereas only a few OMTs have been studied in microbes. When searching the Bacillus cereus genome, four putative small molecular OMTs were identified, among which BcOMT-1 was cloned and expressed in E. coli as a his-tag fusion protein. The whole cell expressing BcOMT-1 was used to methylate several flavonoids. Eriodictyol, luteolin, quercetin, and taxifolin, all of which contain 3' and 4' hydroxyl groups, served as methyl group acceptors for BcOMT-1, whereas naringenin, apigenin, 3,3'-dihydroxyflavone, and 3,4'-dihydroxyflavone did not function as substrates. Analysis of the reaction products using HPLC showed two different peaks, and NMR revealed that the methylation position was at the hydroxyl group of either carbon 3' or 4'. Therefore, this showed that BcOMT-1 used flavonoids containing ortho hydroxyl groups and transferred a methyl group to either of two hydroxyl groups.

Quercetin Directly Interacts with Vitamin D Receptor (VDR): Structural Implication of VDR Activation by Quercetin

  • Lee, Ki-Young;Choi, Hye-Seung;Choi, Ho-Sung;Chung, Ka Young;Lee, Bong-Jin;Maeng, Han-Joo;Seo, Min-Duk
    • Biomolecules & Therapeutics
    • /
    • v.24 no.2
    • /
    • pp.191-198
    • /
    • 2016
  • The vitamin D receptor (VDR) is a member of the nuclear receptor (NR) superfamily. The VDR binds to active vitamin $D_3$ metabolites, which stimulates downstream transduction signaling involved in various physiological activities such as calcium homeostasis, bone mineralization, and cell differentiation. Quercetin is a widely distributed flavonoid in nature that is known to enhance transactivation of VDR target genes. However, the detailed molecular mechanism underlying VDR activation by quercetin is not well understood. We first demonstrated the interaction between quercetin and the VDR at the molecular level by using fluorescence quenching and saturation transfer difference (STD) NMR experiments. The dissociation constant ($K_d$) of quercetin and the VDR was $21.15{\pm}4.31{\mu}M$, and the mapping of quercetin subsites for VDR binding was performed using STD-NMR. The binding mode of quercetin was investigated by a docking study combined with molecular dynamics (MD) simulation. Quercetin might serve as a scaffold for the development of VDR modulators with selective biological activities.

Design, Synthesis and Preliminary Biological Evaluation of a Biotin-S-S-Phosphine Reagent

  • Kang, Dong W.;Kim, Eun J.
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.383-391
    • /
    • 2014
  • Biotin-S-S-Phosphine was designed and synthesized as a potential tool for a proteomic study of O-GlcNAcmodified proteins. This reagent features a disulfide linker between a triarylphosphine moiety, which allows selective conjugation to azide-containing proteins, and a biotin moiety that can allow easy isolation through its strong affinity toward avidin-coated solid beads. The disulfide linkage within this reagent can allow the easy release of the bound molecules of interest, which is difficult to achieve when a biotin:avidin pair is used alone, by reducing the disulfide bond of the reagent with DTT. Preliminary in vitro biological assays with azidelabeled and unlabeled cell lysates and a pure protein Nup62 showed that the Biotin-S-S-Phosphine reagent is highly reactive toward the free thiol groups of proteins. When a molecular tool with a disulfide linker is applied to the enrichment of the molecules of interest from other species, it is important to block the free-thiols of the sample using exhaustive alkylation prior to the Staudinger ligation reactions to restore the bioorthogonal nature of this reaction.

Biological Functions and Production Technology of Carotenoids (Carotenoids의 생리 기능성과 생산기술)

  • 홍상필;김명희;황재관
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.6
    • /
    • pp.1297-1306
    • /
    • 1998
  • Carotenoids are yellow to orange red pigments that are ubiquitous in the nature and its annual pro duction amounts to one hundred million ton. This review discussed physicochemical properties, antiox idative activity, anticancer activity of carotenoids and its production technology. Carotenoids, mainly used as food colourants, are characterized by its strong reactive conjugated double bonds, related to oxidation by heat, light, acid, and metal ions. The provitamin A activity of carotenoids is higher in trans form than in cis form. Antioxidative properties of carotenoids are related to ionone structure and long, conjugated polyene chain number. In particular, carotene, astaxanthin, canthaxanthin, and lycopene possess strong antioxidant activity, compared with tocopherol. Especially, carotene, astaxanthin, carotene, fucoxanthin, halocynthiaxanthin and peridinin impart strong anticancer activity against lung cancer, breast cancer, buccal pouch cancer and nerve cell cancer. Carotene and astaxanthin are produced by biotechnology using algae such as Dunaliella salina and Haematococcus pluvalis. But the change of cultivation conditions and screening of algae, efficiently producing carotenoids, are needed for its commercial production. Carotenoids are expected to be used in the various fields through explanation of its biological activity and establishment of commercial production technology.

  • PDF

Electron Pre-acceleration in Weak Quasi-perpendicular Shocks in Clusters of Galaxies

  • Ha, Ji-Hoon;Kang, Hyesung;Ryu, Dongsu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.49.1-49.1
    • /
    • 2019
  • Giant radio relics in the outskirts of galaxy clusters have been observed and they are interpreted as synchrotron emission from relativistic electrons accelerated via diffusive shock acceleration (DSA) in weak shocks of Ms < 3.0. In the DSA theory, the particle momentum should be greater than a few times the momentum of thermal protons to cross the shock transition and participate in the Fermi acceleration process. In the equilibrium, the momentum of thermal electrons is much smaller than the momentum of thermal protons, so electrons need to be pre-accelerated before they can go through DSA. To investigate such electron injection process, we study the electron pre-acceleration in weak quasi-perpendicular shocks (Ms = 2.0 - 3.0) in an ICM plasma (kT = 8.6 keV, beta = 100) through 2D particle-in-cell simulations. It is known that in quasi-perpendicular shocks, a substantial fraction of electrons could be reflected upstream, gain energy via shock drift acceleration (SDA), and generate oblique waves via the electron firehose instability (EFI), leading the energization of electrons through wave-particle interactions. We find that such kinetic processes are effective only in supercritical shocks above a critical Mach number, $Ms{\ast}{\sim}2.3$. In addition, even in shocks with Ms > 2.3, energized electrons may not reach high energies to be injected to DSA, because the oblique EFI alone fails to generate long-wavelength waves. Our results should have implications for the origin and nature of radio relics.

  • PDF

Synthesis, Characterization and Biological Activities of 4-(p-Chlorophenyl)-1-(pyridin-2-yl)thiosemicarbazide and Its Metal Complexes

  • Hassanien, Mohammad M.;Mortada, Wael I.;Hassan, Ali M.;El-Asmy, Ahmed A.
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.6
    • /
    • pp.679-691
    • /
    • 2012
  • New series of metal complexes of Co(II), Ni(II), Cu(II), Zn(II), Pd(II) and Pt(II) with 4-(p-chlorophenyl)-1-(pyridin-2-yl)thiosemicarbazide (HCPTS) have been synthesized and characterized by elemental analyses, magnetic moment, spectra (IR, UV-Vis, $^1H$ NMR, mass and ESR) and thermal studies. The IR data suggest different coordination modes for HCPTS which behaves as a monobasic bidentate with all metal ions except Cu(II) and Zn(II) which acts as a monobasic tridentate. Based on the electronic and magnetic studies, Co(II), Cu(II), Pd(II) and Pt(II) complexes have square - planner, Ni(II) has mixed stereochemistry (tetrahedral + square planar), while Zn(II) is tetrahedral. Molar conductance in DMF solution indicates the non-ionic nature of the complexes. The ESR spectra of solid copper(II) complex show $g_{\parallel}$ (2.2221) > $g_{\perp}$ (2.0899) > 2.0023 indicating square-planar structure and the presence of the unpaired electron in the $d_x2_{-y}2$ orbital with significant covalent bond character. The thermal stability and degradation kinetics of the ligand and its metal complexes were studied by TGA and DTA and the kinetic parameters were calculated using Coats-Redfern and Horowitz-Metzger methods. The complexes have more antibacterial activity against some bacteria than the free ligand. However, the ligand has high anticancer activities against HCT116 (human colon carcinoma cell line) and HEPG2 (human liver hepatocellular carcinoma cell line) compared with its complexes.

Biological Clock and Ultradian Metabolic Oscillation in Saccharomyces cerevisiae (Saccharomyces cerevisiae의 생물시계와 초단기 대사진동)

  • Kwon, Chong Suk;Sohn, Ho-Yong
    • Journal of Life Science
    • /
    • v.28 no.8
    • /
    • pp.985-991
    • /
    • 2018
  • Biological clocks are the basis of temporal control of metabolism and behavior. These clocks are characterized by autonomous free-running oscillation and temperature compensation and are found in animals, plants, and microorganisms. To date, various biological clocks have been reported. These include clocks governing hibernation, sleep/wake, heartbeat, and courtship song. These clocks can be differentiated by the period of rhythms, for example, infradian rhythms (> 24-hr period), circadian rhythms (24-hr period), and ultradian rhythms (< 24-hr period). In yeast (Saccharomyces cerevisiae), at least five different autonomous oscillations have been reported; (1) glycolytic oscillations (T = 1~30 min), (2) cell cycle-dependent oscillations (T = 2~16 hr), (3) ultradian metabolic oscillations (T = 15~50 min), (4) yeast colony oscillations (T = a few hours), and (5) circadian oscillations (T = 24 hr). In this review, we discuss studies on oscillators, pacemakers, and synchronizers, in addition to the application of biological clocks, to demonstrate the nature of autonomous oscillations, especially ultradian metabolic oscillations of S. cerevisiae.