• 제목/요약/키워드: CEH sequence

검색결과 2건 처리시간 0.017초

Bleaching of Hardwood Kraft Pulp by Xylanase Pretreatment

  • Cho, Nam-Seok
    • Journal of the Korean Wood Science and Technology
    • /
    • 제27권4호
    • /
    • pp.65-71
    • /
    • 1999
  • This study was carried out to investigate the effect of xylanase pretreatment of the unbleached hardwood kraft pulp during the conventional Chlorine-Extraction- Hypochlorite (CEH) bleaching on pulp property. Optimum bleaching condition was evaluated by using Novozym produced from the fungus Humicola insolens. Also the effect of chelating agent prior to enzyme treatment was analyzed. The kappa number of enzymatic bleached pulp at the enzyme charge 10 IU/ml was slightly similar to that of bleached pulp without enzyme. By enzyme treatment, the chlorine charge in conventional CEH bleaching process of hardwood KP could be reduced by 17%, while no adverse effect on pulp yield and strength was. The optimum condition for enzyme pretreatment was 10 IU/ml xylanase charge, 3 to 4 hrs treatment, and 2% pulp consistency. In sugar composition in the enzyme pretreated pulp, arabinose and mannose were not much different, but more xylose was retained. This high content of hemicellulose in pulp seems to play an important role in pulp properties. The pulp pretreatment by chelating agent prior to enzyme treatment could improve the enzyme activity and enhance the bleaching effect at 0.2% diethylenetriamine pentaacetic acid (DTPA) charges.

  • PDF

PLP-1 Binds Nematode Double-stranded Telomeric DNA

  • Im, Seol Hee;Lee, Junho
    • Molecules and Cells
    • /
    • 제20권2호
    • /
    • pp.297-302
    • /
    • 2005
  • The integrity and proper functioning of telomeres require association of telomeric DNA sequences with specific binding proteins. We have characterized PLP-1, a $PUR{\alpha}$ homolog encoded by F45E4.2, which we previously identified as a candidate double stranded telomere binding protein, by affinity chromatography followed by mass spectrometry. PLP-1 bound double-stranded telomeric DNA in vitro as shown by competition assays. Core binding was provided by the third and fourth nucleotides of the TTAGGC telomeric repeat. This is quite different from the binding sequence of CEH-37, another C. elegans telomere binding protein, suggesting that multiple proteins may bind nematode telomeric DNA simultaneously in vivo.