• Title/Summary/Keyword: CEC efficiency

Search Result 33, Processing Time 0.026 seconds

Relationship Between Soil Water-Stable Aggregates and Physico-chemical Soil Properties (토양 내수성 입단과 토양특성과의 관계)

  • Hyun, Byung-Keun;Jung, Sug-Jae;Song, Kwan-Cheol;Sonn, Yeon-Kyo;Jung, Won-Kyo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.1
    • /
    • pp.57-63
    • /
    • 2007
  • Soil aggregation has been considered as an important factor not only for increasing soil productivity and soil quality but also improving nutrient use availability and water use efficiency. However, the relationship between soil aggregation and soil properties hasn't well reported for Korean soils. Objective of this research was to identify the relationship among soil water-stable aggregate (WSA), soil properties and soil dispersion ratio. Soil samples were analyzed for water-stable aggregate, Middleton's dispersion ratio, and soil physical and chemical properties. Water-stable aggregate was significantly correlated to soil textural properties, soil organic matter, and exchangeable cations. Middleton's dispersion ratio was significantly correlated with water-stable aggregate ($r=-0.76^{***}$). Regression equation for water-stable aggregate was estimated by Middleton's dispersion ratio (Y=-0.79X + 96.49; $r^2=0.58^{**}$). In this research, we conclude that water-stable aggregate was significantly correlated with some soil properties and was able to be estimated by rapid and easily measurable Middleton's dispersion ratio.

Effect of Long-Term Annual Dressing of Organic Matter on Physico-Chemical Properties and Nitrogen Uptake in the Paddy Soil of Fluvio-Marine Deposit (하해혼성 평야지 논토양에서 유기물 장기 연용이 토양의 이화학적 특성 변화 및 질소 흡수에 미치는 영향)

  • Yang, Chang-Hyu;Jeong, Ji-Ho;Kim, Taek-Kyum;Kim, Sun;Baek, Nam-Hyun;Choi, Weon-Young;Kim, Young-Doo;Jung, Won-Kyo;Kim, Si-Ju
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.981-986
    • /
    • 2010
  • This study was carried out to investigate the effects of fertilizer and organic resource annual dressing for 30 years of Jeonbug series (silt loam) on soil properties and rice N uptake in paddy field soil. In the study field, treatments including control (NPK), NPK+rice straw, NPK+rice straw compost and nitrogen fertilization levels at 0, 100, 150, 200, 250 kg $ha^{-1}$ have been imposed for 30 years. Soil hardness and bulk density decreased from 15.7 mm and 1.381 Mg $m^{-3}$ in the control to 12.5 mm and 1.244 Mg $m^{-3}$ in NPK+rice straw compost treatment, respectively, indicating improvement of soil physical conditions such as porosity. Co-application of straw compost with NPK also result in a better chemical properties than NPK alone as it increased available phosphate (from 96 to 133 mg $kg^{-1}$), available silicate (from 81 to 116 mg $kg^{-1}$), and cation exchange capacity (from 9.8 to 11.4 $cmol_c\;kg^{-1}$). Soil organic matter concentration of top soil (0 to 7.5 cm in depth) was higher in NPK+rice straw and NPK+rice straw compost than in control. Fertilizer N uptake amount was much higher in NPK+rice straw (nitrogen fertilization level; 250 kg $ha^{-1}$) and NPK+rice straw compost (nitrogen fertilization levels; 200, 250 kg $ha^{-1}$) plots compared to the control (nitrogen fertilization level; 100 kg $ha^{-1}$) plot. Nitrogen use efficiency was showed significantly high in the NPK+rice straw compost (nitrogen fertilization levels; 100, 150 kg $ha^{-1}$) plot compared to the control (nitrogen fertilization level; 100 kg $ha^{-1}$) plot. Therefore, it was suggested that application of organic inputs is helpful in improving soil fertility and physical conditions and thus in N uptake.

Estimation of carbon storage in reclaimed coal mines: Focused on Betula platyphylla, Pinus koraiensis and Pinus spp. plantations (폐탄광 산림복구지의 수종별 탄소 저장량 추정: 자작나무, 잣나무, 소나무류 식재지를 중심으로)

  • Kim, Gwangeun;Kim, Seongjun;Kim, Hyun-Jun;Chang, Hanna;Kim, Hyungsub;Park, Yong-Ha;Son, Yowhan
    • Korean Journal of Environmental Biology
    • /
    • v.38 no.4
    • /
    • pp.733-743
    • /
    • 2020
  • We estimated the carbon storage of coal mines reclaimed using Betula platyphylla (BP), Pinus koraiensis (PK), and Pinus spp. (PS, Pinus densiflora, Pinus rigida, and Pinus thunbergii). The carbon storage of tree biomass (TB), forest floor(FF), mineral soil (MS), and the total forest were quantified. Reclaimed sites were located in Gangwon-do, Gyeongsangbuk-do, and Jeollanam-do; reclamation was conducted at various times in each region. The carbon storage (ton C ha-1) in FF (BP: 3.31±0.59, PK: 3.60±0.93, PS: 4.65±0.92), MS (BP: 28.62±2.86, PK: 22.26±5.72, PS: 19.95±3.90), and the total forest(BP: 54.81±7.22, PK: 47.29±8.97, PS: 45.50±6.31) were lower than that of natural forests (NF). The carbon storage in TB was lower in BP (22.57±6.18) compared to NF, while those in PK(21.17±8.76) and PS (20.80±6.40) were higher than in NF. While there were no significant differences in the carbon storage of TB, FF, and the total forest among tree species, results from MS showed a significant difference among species. TB and the total forest carbon storages in all sites increased after reclamation. Soil pH and cation exchange capacity values in BP and PS were lower than in NF. Amounts of labile carbon, available phosphate, and microbial biomass carbon in reclaimed sites were less than half of NF. There are a number of methods that could increase the reclamation efficiency. Applications of lime or organic fertilizers, as well as tillage operations, may improve soil properties in reclaimed coal mines. Additionally, pruning and thinning would increase tree growth thereby increasing carbon storage.