• Title/Summary/Keyword: CEB-FIP model

Search Result 70, Processing Time 0.025 seconds

Experimental and Analytical Evaluation of the Seismic performance of a Concrete Box Structure Strengthened with Pre-flexed Members (프리플렉스 부재를 이용한 콘크리트 박스 구조물 내진보강에 관한 실험 및 해석적 평가)

  • Ann, Ho-June;Song, Sang-Geun;Min, Dae-Hong;An, Sang-Mi;Kong, Jung-Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.5
    • /
    • pp.397-403
    • /
    • 2016
  • During the rapid economic growth in Korea since the 1970s, many underground facilities were constructed such as under passes and railways. Seismic design has been mandated in 1988, but the structures built before 1988 were not reflected on the seismic design. Accordingly, these underground structures require effective seismic reinforcing methods to ensure safety when the earthquake happens. By these reasons, in this study, using the proposed pre-flexed members, RC box structure was analyzed for seismic reinforcement of the corner. This method is based on a principle that enlarging the resistance against the external force by installing the pre-flexed member to the box structure corner. To evaluate validity, a newly developed member with CornerSafe was compared with traditional type reinforcement using experiments and finite element analysis. In finite element mode, nonlinearity of steel was modeled based on J2 plasticity model and concrete was based on CEB FIP MODEL CODE 1990. Also, composite ratios of box and pre-flexed member were computed for design application. The reinforcement and box structure were analyzed under the bond condition completely attached by the tie, and the results of experiment and finite element analysis were same in the force-displacement curve.

Estimation of Maximum Crack Width Using Minimum Crack Spacing in Reinforced Concrete (철근 콘크리트부재에서 최소균열간격을 이용한 최대균열폭 산정)

  • 고원준;양동석;장원석;박선규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.903-908
    • /
    • 2001
  • This paper deals with the estimation of the maximum flexural crack widths using minimum crack spacing for reinforced concrete members. The proposed method utilizes the conventional crack and bond-slip theories as well as bonding transfer length and effects of creep and shrinkage between the reinforcement and concrete. An analytical equation for the estimation of the maximum flexural crack width is formulated as a function of mean bond stress. The validity, accuracy and efficiency of the proposed method are established by comparing the analytical results with the experimental data and the major code specifications (e.g., ACI, CEB-FIP Model code, Eurocode 2, etc.). The analytical results of analysis presented in this paper indicate that the proposed method can be effectively estimated the maximum flexural crack width of the reinforced concrete members.

  • PDF

Construction Stage Analysis of Extradosed PSC Box Bridges (Extradosed PSC Box 교의 시공단계해석)

  • 윤군진;이완수;이종신;김성찬
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.347-354
    • /
    • 2001
  • Extradosed PSC Box bridges, newly emerging type of structures in construction market, have a characteristic in that external tendons are used for strengthening PSC Box girder like stay cables in cable stayed bridges. In this study, a series of constructions stage analysis procedure, including initial shape analysis, backward analysis and forward analysis, have been performed in order to investigate long-term behavior of extradosed PSC box bridges, using PCCAP-a computer program for time-dependent stage analysis of PSC cable stayed bridges. CEB-FIP 1978 model was used for the consideration of time-dependent effect of concrete material. Showing the validity of the analysis results with RM SPACE FRAME, it has been confirmd that time-dependent effects become less consequential as the stiffness of girder becomes larger.

  • PDF

ESTIMATION OF CRACK WIDTH USING BOND STRESS-RELATIVE SLIP (부착응력-상대슬립을 이용한 휨균열폭 산정)

  • 고원준;김진호;서봉원;박선규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.917-922
    • /
    • 2002
  • This paper deals with the estimation of the maximum crack widths considering bond-slip relationships based on experimental data that were tensed by axial force. It is certificated that the concrete stress condition clearly affects the bond-slip relationship. The proposed method utilizes the conventional crack and bond-slip theories as well as the characteristics of deformed reinforcement and size effects. An analytical equation for the estimation of the maximum flexural crack width is formulated as a function of minimum crack length and the coefficient of bond stress effect. The validity, accuracy and efficiency of the proposed method are established by comparing the analytical results with the experimental data and the major specifications (e.g., ACI, CEB-FIP Model code, Turocode 2, JSCE, etc.). The analytical results presented in this paper indicate that the proposed method can be effectively estimated the maximum flexural crack width of reinforced concrete.

  • PDF

Analytical Study on the Prestress Losses of Prestressed Concrete Bridges (PSC 교량의 프리스트레스 손실에 관한 해석적 연구)

  • Kim, Woon-Hak;Ra, Jeong-Kyoun;Kim, Tae-Hoon;Shin, Hyun-Mock
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.1
    • /
    • pp.131-138
    • /
    • 2003
  • This paper presents an analytical prediction of the prestress losses of prestressed concrete bridges. In this study a numerical procedure and computer program is developed to analyze the behavior of prestressed concrete bridges considering the time-dependent properties of material. It accounts for the aging, creep and shrinkage of concrete and the stress relaxation of prestressed steel. The structural model uses two dimensional plane frame elements with three nodal degree of freedom and is analyzed based on the finite element method. Member cross section can consist of concrete, reinforcement and prestressing steel. Two different set of equations for the prediction of time-dependent material properties of concrete are presented, which are ACI, CEB-FIP. The proposed numerical method for the prestress losses of prestressed concrete bridges is verified by comparison with reliable experimental results.

Time dependent Analysis of RC Column in Subway Structure having high Filled Soil Layer (토피가 큰 콘크리트 지하구조물의 기둥에 대한 시간의존적 해석)

  • Jeong, Jae-Pyoung;Lee, Sang-Hee;Kim, Saeng-Bin;Kim, Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.603-608
    • /
    • 1998
  • This study was performed to examine the effect of time dependent properties on RC columns in subway structures subjected to high filled soil layer. By using Program TCC which is a modified version of CPF for the present purpose, a typical column in subway structure was analyzed. Four different model equations for predicted time dependent concrete properties(ACI, CEB-FIP, Bazant & Panula and Korea Bridge Specification) was employed, and the results were compared. It was found that a relevant creep coefficient is recommended to be 1.0 for designing columns in subway structure, and the sol filling work would be performed at least 3 months later after the concrete casting in order to ensure durability by reducing the negative effect of concrete time dependent properties.

  • PDF

A Study on the Time-dependent Characteristics of Prestressed Concrete Box-Girder Bridge (프리스트레스트 콘크리트 박스거더 교량이 시간의존적 특성에 관한 연구)

  • 윤영수;이만섭;최한태
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.674-679
    • /
    • 1998
  • In designing the prestressed concrete box-bridge, the dead load, prestressing force, creep and shrinkage of concrete are the main factors which influence the camber and deflection of segmental concrete structure under construction. Among these factors the creep and shrinkage are the functions of the time-dependent property which, therefore, must be considered with time. The prediction model for estimating creep and shrinkage of concrete has been suggested by ACI, CEB/FIP, JSCE and KSCE design code and EMM, AEMM, RCM, IDM and SSM has been suggested for analytical method in consideration of the time-dependent characteristics. In this study, the creep test was carried out for four curing ages of concrete which were applied to the prestressed concrete structure at a construction site, and the results of test were compared to the values of creep prediction by the design code. Also the creep test of step-wise incremental stresses were performed and were compared to analytical methods.

  • PDF

Local bond stress-slip behavior of reinforcing bars embedded in lightweight aggregate concrete

  • Tang, Chao-Wei
    • Computers and Concrete
    • /
    • v.16 no.3
    • /
    • pp.449-466
    • /
    • 2015
  • This paper aims to study the local bond stress-slip behavior of reinforcing bars embedded in lightweight aggregate concrete (LWAC). The experimental variables of the local bond stress-slip tests include concrete strength (20, 40 and 60 MPa), deformed steel bar size (#4, #6 and #8) and coarse aggregate (normal weight aggregate, reservoir sludge lightweight aggregate and waterworks sludge lightweight aggregate). The test results show that the ultimate bond strength increased with the increase of concrete compressive strength. Moreover, the larger the rib height to the diameter ratio ($h/d_b$) of the deformed steel bars is, the greater the ultimate bond stress is. In addition, the suggestion value of the CEB-FIP Model Code to the LWAC specimen's ultimate bond stress is more conservative than that of the normal weight concrete.

Development of Drying Shrinkage Model for HPC Based on Degree of Hydration by CEMHYD-3D Calculation Result (CEMHYD-3D로 예측된 수화도를 기초로 한 고성능 콘크리트의 건조수축 모델제안)

  • Kim Jae Ki;Seo Jong-Myeong;Yoon Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.501-504
    • /
    • 2004
  • This paper proposes degree of hydration based shrinkage prediction model of 40MPa HPC. This model shows degree of hydration which is defined as the ratio between the hydrated cement mass and the initial mass of cement is very closely related to shrinkage deformation. In this study, degree of hydration was determined by CEMHYD-3D program of NIST. Verification of the predicted degree of hydration is performed by comparison between test results of compressive strength and estimated one by CEMHYD-3D. Proposed model is determined by statistical nonlinear analysis using the program Origin of Origin Lab. Co. To get coefficients of the model, drying shrinkage tests of four specimen series were followed with basic material tests. Testes were performed in constant temperature /humidity chamber, with difference moisture curing ages to know initial curing time effect. Verification with another specimen, collected construction field of FCM bridge, was given in the same condition as pre-tested specimens. Finally, all test results were compared to propose degree of hydration based model and other code models; AASHTO, ACI, CEB-FIP, JSCE, etc.

  • PDF

Experimental Evaluation of the Punching Shear Strength with Lightweight Aggregate Concrete Slabs (경량골재 콘크리트 바닥판의 펀칭전단강도의 실험적 평가)

  • Kim, Jung-Joong;Moon, Ji-Ho;Youm, Kwang-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.3
    • /
    • pp.361-367
    • /
    • 2014
  • This paper investigates the punching shear strength of lightweight aggregate concrete (LWAC) slabs through a series of experimental study. Five full scale slabs were constructed using normal concrete and four different types of LWAC. Each lightweight aggregate (LWA) used in this study had different sources (clay, shale, or slate) and shapes (crushed or spherical shape). Based on the test results, the effect of the lightweight aggregates (LWA) on the punching shear behavior was investigated. From the test results, it was found that the punching shear failure surface of LWAC slab with spherical shape coarse aggregate was less inclined than that with crushed shape coarse aggregate, which resulted in an increase of the area of the shear failure surface. As a result, it leads to the increased punching shear strength of the slab. On the other hand, the failure surfaces of LWAC slab with crushed shape coarse aggregate and normal coarse aggregate were inclined similarly. Finally, the test results of this study were compared with the punching shear strength obtained from current design models, such as ACI and CEB-FIP, to examine the validation of current design model to predict the punching shear strength of the LWAC slab.