• Title/Summary/Keyword: CDMA Downlink

Search Result 96, Processing Time 0.024 seconds

Data rate control for suppression of inter-cell interference in TD-SCDMA systems (TD-SCDMA에서 셀간 간섭 억제를 위한 전송속도 제어)

  • Yeo, Woon-Young;Lee, Sang-Yun
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.265-266
    • /
    • 2008
  • TD-SCDMA combines TDMA and CDMA components to provide more efficient use of radio resources. However, since the same frequency band is used in both the uplink and downlink, serious interference may occur if the base stations are not synchronized. The interference caused by different transmission directions between neighboring cells is called cross-slot interference. This paper proposes a data rate control algorithm that can decrease the cross-slot interference in TD-SCDMA.

  • PDF

Optimal Interference Rejection Weight for Multistage Parallel Nulling-Partial PIC Receiver for MIMO MC-CDMA Systems (MIMO MC-CDMA 시스템을 위한 다단계 병렬 널링 및 부분 간섭 제거 수신기를 위한 최적 가중치 결정)

  • 구정회;김경연;심세준;이충용
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.11
    • /
    • pp.9-15
    • /
    • 2004
  • We propose optimal interference rejection weight for multistage parallel nulling (MPN) partial parallel interference cancellation (PPIC) receiver previously proposed to enhance the performance of V-BLAST for downlink multiple-input multiple-output (MIMO) multicarrier (MC)-code division multiple access (CDMA) systems. MPN-PPIC method proposed in [1] was based on the parallel interference cancellation (PIC) with fixed interference rejection weight obtained experimentally. However, the fixed weight can not be adapted to various systems efficiently, thus we proposed method for the optimal interference rejection weight based on the received signal to interference and noise ratio (SINR), and the performance of the proposed method was evaluated through computer simulation comparing with the previous method. We obtained performance gains of 2.5 dB ~ 5 dB for BER of 10$^{-3}$ .

A Joint Power Allocation and Scheduling Algorithm for CDMA-based High-rate Packet Data Systems (CDMA기반 고속 패킷 데이터 전송 시스템을 위한 전력제어가 결합된 스케쥴링 알고리즘)

  • Koo In-Soo;Kim Ki-Seon
    • Journal of Internet Computing and Services
    • /
    • v.7 no.3
    • /
    • pp.41-51
    • /
    • 2006
  • In the case of CDMA-based packet data systems such as 1xEV-DO which are designed to support high rate services, BSs transmit data packets with a maximum power based on time multiplexing mode such that only one user can be serviced at a time. In this paper, we propose a joint power allocation and scheduling algorithm for 1xEV-DO-like systems in which we adopt a code division multiplexing (CDM) transmission method in the downlink common channel in order to utilize channel orthogonality such that we can serve more than one user at a time slot especially when there exist remaining resources after serving the firstly selected user by the scheduler. Simulation results demonstrate that the proposed scheme can improve the performances of conventional schemes such as the maximum rate and the proportional fair algorithms.

  • PDF

A CDMA System for Wireless ATM Service: Multiple Radio Link and Power Control Algorithm (무선 ATM 서비스를 위한 CDMA 시스템: 다중 무선 링크 구성과 전력 제어 알고리즘)

  • 임광재;곽경섭
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.6A
    • /
    • pp.791-802
    • /
    • 1999
  • This paper introduces a wireless multimedia CDMA system using a simulcasting method and configuring multiple radio links between a user and radio ports. The CDMA system with multiple links can support seamless and soft handoffs as well as port-diversity effect. We propose two transmission power control algorithms for the multiple links which support the required service quality. We perform simulations for the capacity of the proposed system. In the simulations, a system with nine ports is configured and simulated. For the uplink, as the number of the multiple links increases, the capacity also increases and immediately approaches to the theoretical upper limit. It is shown that four radio links are enough to achieve the theoretical maximum capacity. On the other hand, for the downlink, though it has the merit of soft and seamless handoff in the wireless ATM system, the capacity rather decreases as the increase of the number of the links due to the severe multiple interferences.

  • PDF

Performance Analysis of Smart Antenna Base Station Implemented for CDMA2000 1X (CDMA2000 1X용으로 구현된 스마트 안테나 기지국 시스템의 성능분석)

  • 김성도;이원철;최승원
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.9A
    • /
    • pp.694-701
    • /
    • 2003
  • In this paper, we present a hardware structure and new features of a smart antenna BTS (Base Transceiver Station) for CDMA2000 1X system. The proposed smart antenna BTS is a composite system consisting of many subsystems, i.e., array antenna element, frequency up/down converters, AD (Analog-to-Digital) and DA (Digital-to-Analog) converters, spreading/despreading units, convolutional encoder/Viterbi decoder, searcher, tracker, beamformer, calibration unit etc. Through the experimental tests, we found that the desired beam-pattern in both uplink and downlink communications is provided through the calibration procedure. Also it has been confirmed that the adaptive beamforming algorithm adopted to our smart antenna BTS is fast and accurate enough to support 4 fingers to each user. In our experiments, commercial mobile terminals operating PCS (Personal Communication System) band have been used. It has been confirmed that the smart antenna BTS tremendously improves the FER (Frame Error Rate) performance compared to the conventional 2-antenna diversity system.

The Optimum SIR-Based Downlink Power Control for HAP W-CDMA (HAP W-CDMA 시스템을 위한 SIR 기반의 최적 다운링크 전력 제어)

  • Kang, Young-Heung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.6A
    • /
    • pp.642-647
    • /
    • 2007
  • HAP(High Altitude Platform) systems have been proposed due to their unique advantages over terrestrial and satellite systems as the alternative wireless communication system to deliver the third generation IMT-2000 wireless services. It has been required to study for the power control in W-CDMA HAP system as well as the terrestrial mobile system in order to mitigate interference and increase the capacity. In this paper, a new power control has been proposed for HAP system considering the interference profile into the DB(distributed balancing) SIR(signal to interference ratio)-based algorithm which has been considered in terrestrial system, and estimated by the outage performance of the proposed DB algorithm is better remarkably than DBPA(distance-based power allocation) which is proposed for HAP system, and it is the same regardless of the antenna maximum gain and its sidelobe characteristics.

Introductions of Pre-Rake with Frequency Domain Equalizer and Cyclic Prefix Reduction Method in CDMA/TDD Multi-code Transmission (CDMA/TDD 다중코드 전송에서 주파수 도메인 등화기와 결합된 Pre-Rake 와 Cyclic Prefix 최소화 방법)

  • Lee, Jun-Hwan;Jeong, In-Cheol
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.1
    • /
    • pp.86-96
    • /
    • 2011
  • In this paper we propose a Pre-rake system applied with a frequency domain equalizer in TDD/CDMA multi-code transmission. The Pre-rake system has been well known technique in TDD/CDMA to make a receiver simple. However, it still has residual losses of path diversity and signal to noise ratio (SNR). However, gathering all the residual paths demands an additional hardware such as a rake combiner at the receiver. For the reason Pre/Post-rake system has already been proposed at up/downlink correlated channel conditionunder the assumption of noisier channel. There is a trade-off between the first purpose of Pre-rake that makes hardware simple at the receiver and the performance improvement. From the point the frequency domain equalizer (FDE) can be considered in Pre/Post-rake to supply the receiver with the flexible equalizing methods with rather reduced complexity compared with time domain rake combiner or equalizers. Pre-rake itself increases the number of multipath, which results from the convolution of Pre-rake filter and wireless channel, and FDE must be well matched to Pre/Post-rake, while it considers the relationship of hardware complexity and the performance. In this paper, the Pre-rake/Post-FDE system is introduced at TDD/CDMA multi-code transmission. In addition, the cyclic prefix reduction method in the proposed system is introduced, and the theoretical analysis to the proposed system is given by assuming Gaussian approximation, and finally the numerical simulation results are provided.

Performance Analysis of Adaptive MMSE Receiver for CDMA Downlink

  • Nam, Ock-woo;Kim, Jae-hyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.3
    • /
    • pp.435-441
    • /
    • 2001
  • In this paper, we proposed adaptive MMSE receiver, which use channel equalizer to eliminate the interference due to multi-path fading and adaptive filter to eliminate the multiple access interference. The unique features of proposed receiver schemes are as following. We use pilot channel to estimate the channel coefficients exactly and guard symbols which are inserted periodically to estimate channel coefficients exactly without interference from user signals. The length of channel equalizer also can be reduced with the help of guard symbols. Especially utilizing adaptive code-matched filter(AMMSE) when the user population is high and SNR is not low we accepts excellent performance improvement.

  • PDF

Channel-Based Scheduling Policy for QoS Guarantees in Wireless Links

  • Kim Jeong Geun;Hong Een-Kee
    • Journal of Internet Computing and Services
    • /
    • v.5 no.6
    • /
    • pp.11-20
    • /
    • 2004
  • Proportional Fair (PF) share policy has been adopted as a downlink scheduling scheme in CDMA2000 l×EV-DO standard. Although It offers optimal performance in aggregate throughput conditioned on equal time share among users, it cannot provide a bandwidth guarantee and a strict delay bound. which is essential requirements of real-time (RT) applications. In this study, we propose a new scheduling policy that provides quality-of-service (QoS) guarantees to a variety of traffic types demanding diverse service requirements. In our policy data traffic is categorized Into three classes, depending on sensitivity of Its performance to delay or throughput. And the primary components of our policy, namely, Proportional Fair (PF), Weighted Fair Queuing (WFQ), and delay-based prioritized scheme are intelligently combined to satisfy QoS requirements of each traffic type. In our policy all the traffic categories run on the PF policy as a basis. However the level of emphasis on each of those ingredient policies is changed in an adaptive manner by taking into account the channel conditions and QoS requirements. Such flexibility of our proposed policy leads to offering QoS guarantees effectively and. at the same time, maximizing the throughput. Simulations are used to verify the performance of the proposed scheduling policy. Experimental results show that our proposal can provide guaranteed throughput and maximum delay bound more efficiently compared to other policies.

  • PDF

Optimized Cell ID Codes for SSDT Power Control in W-CDMA System (W-CDMA 시스템의 최적의 SSDT 전력 제어용 셀 식별 부호)

  • Young-Joon Song;Bong-Hoe Kim;Hae Chung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.8
    • /
    • pp.804-810
    • /
    • 2002
  • The code division multiple access(CDMA) system capacity is limited by the amount of interference of the system. To reduce the unnecessary interference, this paper proposes optimized cell identification codes for site selection diversity transmission(SSDT) power control in wideband code division multiple access system of third generation partnership project(3GPP). The main objective of SSDT power control is to transmit on the downlink from the primary cell, and thus reducing the interference caused by the multiple transmission. In order to select a primary cell, each cell is assigned a temporary identification(ID) and user equipment(UE) periodically informs a primary cell ID to the connecting cells during soft handover. The non-primary cells selected by UE do not transmit the dedicated physical data channel(DPDCH) to reduce the interference. A major issue with the SSDT technology is the impact of uplink symbol errors on its performance. These errors can corrupt the primary ID code and this may lead to wrong decoding in the base station receivers. The proposed SSDT cell ID codes are designed to minimize the problem and to be easily decoded using simple fast Hadamard transformation(FHT) decoder.