• 제목/요약/키워드: CDK2 inhibitor

검색결과 99건 처리시간 0.021초

Cdk inhibitors의 발현 증가 및 pRB 인산화 저해에 의한 HDAC inhibitor인 sodium butyrate에 의한 인체백혈병세포의 G1 arrest유발 (G1 Arrest of U937 Human Monocytic Leukemia Cells by Sodium Butyrate, an HDAC Inhibitor, Via Induction of Cdk Inhibitors and Down-regulation of pRB Phosphorylation)

  • 최영현
    • 생명과학회지
    • /
    • 제19권7호
    • /
    • pp.871-877
    • /
    • 2009
  • 대표적인 histone deacetylase inhibitor 저해제의 일종일 sodium butyrate에 의한 인체백혈병 U937세포의 증식 억제에 관한 기전 연구를 세포주기 조절 측면에서 조사하였다. MTT assay 및 flow cytometry 분석을 통하여 sodium butyrate의 처리 농도 증가에 따른 U937 세포의 증식억제는 세포주기 G1 arrest 및 apoptosis 유발에 의한 것임을 확인하였다. RT-PCR및 Western blotting 결과에서 sodium butrate에 의한 G1 arrest는 세포주기 G1기에서 S기로의 진입에 중요한 역할을 하는 cyclin D1, E, A, cyclin-dependent kinase (Cdk) 4 및 Cdk6발현의 저해와 p21 및 p27과 같은 Cdk inhibitor의 발현 증가와 연관성이 있었다. Sodium butyrate는 또한 retinoblastoma protein (pRB)및 p130 단백질의 인산화를 저해시켰으나, S기 진행에 중요한 전사조절인자인 E2F-1 및 E2F-4의 의 발현에는 큰 영향이 없었다. 그러나 sodium butyrate에 의한 pRB 및 p130단백질의 인산화 저해는 pRB와 E2F-1및 p130과 E2F-4와의 결합력을 증사시켰다. 본 연구의 결과는 U937세포의 증식억제에 pRB/p130 인산화 억제 및 Cdk inhibitors의 발현 증가가 중요한 역할을 하고있음을 보여주는 것으로, sodium butyrate의 항암기전 이해에 중요한 자료가 될 것이다.

Discovery of Cyclin-dependent Kinase Inhibitor, CR229, Using Structure-based Drug Screening

  • Kim, Min-Kyoung;Min, Jae-Ki;Choi, Bu-Young;Lim, Hae-Young;Cho, Youl-Hee;Lee, Chul-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권10호
    • /
    • pp.1712-1716
    • /
    • 2007
  • To generate new scaffold candidates as highly selective and potent cyelin-dependent kinase (CDK) inhibitors, structure-based drug screening was performed utilizing 3D pharmacophore conformations of known potent inhibitors. As a result, CR229 (6-bromo-2,3,4,9-tetrahydro-carbolin-1-one) was generated as the hit-compound. A computational docking study using the X-ray crystallographic structure of CDK2 in complex with CR229 was evaluated. This predicted binding mode study of CR229 with CDK2 demonstrated that CR229 interacted effectively with the Leu83 and Glu81 residues in the ATP-binding pocket of CDK2 for the possible hydrogen bond formation. Furthermore, biochemical studies on inhibitory effects of CR229 on various kinases in the human cervical cancer HeLa cells demonstrated that CR229 was a potent inhibitor of CDK2 ($IC_{50}:\;3\;{\mu}M$), CDKI ($IC_{50}:\;4.9\;{\mu}M$), and CDK4 ($IC_{50}:\;3\;{\mu}M$), yet had much less inhibitory effect ($IC_{50}:>20\;{\mu}M$) on other kinases, such as casein kinase 2-${\alpha}1$ (CK2-${\alpha}1$), protein kinase A (PKA), and protein kinase C (PKC). Accordingly, these data demonstrate that CR229 is a potent CDK inhibitor with anticancer efficacy.

The Role of Cell Cycle Regulators in Normal and Malignant Cell Proliferation

  • Lee, Jin-Hwa
    • 대한의생명과학회지
    • /
    • 제16권2호
    • /
    • pp.71-74
    • /
    • 2010
  • Cell proliferation is governed by precise and orderly process the regulation of which involves many different proteins. The key enzyme for cell growth and arrest is cyclin dependent kinases (cdks). In human cells, several cdks orchestrate four distinct cell cycle phases (M, $G_1$, S and $G_2$ ) and they sequentially operate in an order of cdc1, cdk4, cdk6 and cdk2. The regulatory components of cdks consist of cyclins and two family of cdk inhibitors, INK4 (inhibitors of cdk4) and KIP (kinase inhibitor protein). $G_1$ regulatory molecules for cdk mainly respond to environmental cues of mitogenic and anti-mitogenic stimuli and therefore influence activities of $G_1$ cdks, namely, cdk4/6 and cdk2. $G_1$ inhibitors include $p21^{CIP}$ and $p27^{KIP1}$. Between them, $p27^{KIP1}$ has attracted attentions of many researchers because of its characteristic regulatory features and diverse functions. Besides, the role of $p27^{KIP1}$ in cancer development warrants further studies in the future. Therefore, this review will focus on the recent findings and especially on the complexity of regulatory mechanisms of $p27^{KIP1}$.

Effects of BMI-1026, A Potent CDK Inhibitor, on Murine Oocyte Maturation and Metaphase II Arrest

  • Choi, Tae-Saeng
    • Reproductive and Developmental Biology
    • /
    • 제31권2호
    • /
    • pp.71-76
    • /
    • 2007
  • Previous studies have shown that BMI-1026 is a potent inhibitor of the cyclin-dependent kinases (cdk). In cell culture, the compound also arrests G2/M strongly and G1/S and S weakly. Two key kinases, cdk1 (p34cdc2 kinase) and mitogen-activated protein (MAP) kinase (erk1 and 2), perform crucial roles during oocyte maturation and, later, metaphase II (MII) arrest. In mammalian oocytes, both kinases are activated gradually around the time of germinal vesicle breakdown (GVBD) and maintain high activity in eggs arrested at metaphase II. In this study, we examined the effects of BMI-1026 on GVBD and MII arrest in mouse oocytes. BMI-1026 inhibited GVBD of immature oocytes and activated MII-arrested oocytes in a concentration-dependent manner, with more than 90% of oocytes exhibiting GVBD inhibition and MII activation at 100 nM This is approximately 500$\sim$1,000 times more potent than the activity reported for the cdk inhibitors roscovitine (${\sim}50{\mu}M$) and butyrolactone (${\sim}100{\mu}M$). Based on the results of previous in vitro kinase assays, we expected BMI-1026 to inhibit only cdk1 activation in oocytes and eggs, not MAP kinase. However, in our cell-based system, it inhibited the activity of both kinases. We also found that the effect of BMI-1026 is reversible. Our results suggest that BMI-1026 inhibits GVBD and activates MII-arrested oocytes efficiently and reversibly and that it also inhibits both cdk1/histone HI kinase and MAP kinase in mouse oocytes.

Effect of MLN8237, a Novel Aurora A Kinase Inhibitor, on the Spontaneous Fragmentation of Ovulated Mouse Oocytes

  • Park, Ji-Hun;Choi, Tae-Saeng
    • Reproductive and Developmental Biology
    • /
    • 제35권4호
    • /
    • pp.499-502
    • /
    • 2011
  • Aurora A kinase is a mitotic serine/threonine kinase whose proposed functions include the maturation of centrosomes, G2/M transition, alignment of chromosomes at metaphase, and cytokinesis. In this study, we investigated the effect of MLN8237, an aurora A kinase inhibitor, on the postovulatory aging of oocytes based on the frequency of oocyte fragmentation, cdk1 kinase activity, and cyclin B degradation. The fragmentation of ovulated oocytes during prolonged culture was inhibited by treatment with MLN8237 in a concentration-dependent manner. The frequency of fragmented oocytes was significantly lower in oocytes treated with 2 ${\mu}M$ MLN8237 (13%) than in control oocytes (64%) after two days of culture. Most of the control (non-fragmented) oocytes (91%) were activated after two days of culture. In comparison, only 22% of the MLN8237-treated oocytes were activated; the rest of the oocytes (78%) were still in metaphase with an abnormal spindle and dispersed chromosomes. Next, cdk1 activity and the level of cyclin B were examined. The level of cyclin B and cdk1 activity in MLN8237-treated oocytes were nearly equal to those in control oocytes. Our results indicate that MLN8237 inhibited the fragmentation of ovulated oocytes during prolonged culture, although it blocked the spontaneous decrease in activity of cdk1 and degradation of cyclin B. This mechanism of inhibition is different from that in oocytes treated with nocodazole, which have high levels of cdk1 activity and cyclin B.

7-Chloro-4-nitro-benzo[1,2,5]oxadliazole 1-oxide의 CDK4 활성저해 (Inhibition of CDK4 activity by 7-chloro-4-nitro-benzo[1,2,5]oxadiazole 1-oxide)

  • 전용진;고종희;연승우;김태용
    • 약학회지
    • /
    • 제50권1호
    • /
    • pp.52-57
    • /
    • 2006
  • The activation of cyclin dependent kinase 4 (CDK4) is found in more than half of all human cancers. Therefore CDK4 is an attractive target for the development of a novel anticancer agent. For mass screening of CDK4 inhibitor, we set up in vitro kinase assay for CDK4 activity using a cyclin D1-CDK4 fusion protein, which is constitutively active and exhibits enhanced stability. From the screening of representative compound library of Korea Chemical Bank, we found that 7-chloro-4-nitro-benzo[1,2,5]oxadiazole 1-oxide (FBP-1248) selectively inhibited CDK4 activity in vitro by ATP competitive manner. This compound prevented the phosphorylation of retinoblatsoma tumor suppressor protein, Rb, and inhibited cell growth through cell cycle arrest. In summary, we developed an efficient assay system for CDK4 activity in vitro and identified the CDK4 inhibitory compound, FBP-1248.

Cordycepin에 의한 LNCap 인체 전립선 암세포의 apoptosis 및 G2/M arrest 유발 (Induction of Apoptosis and G2/M Cell Cycle Arrest by Cordycepin in Human Prostate Carcinoma LNCap Cells)

  • 이혜현;황원덕;정진우;박철;한민호;홍수현;정영기;최영현
    • 생명과학회지
    • /
    • 제24권1호
    • /
    • pp.92-97
    • /
    • 2014
  • Cordycepin은 Cordyceps militaris에서 처음 유래된 nucleoside adenosine 유도체의 일종으로 면역증강 및 항암활성을 포함한 다양한 약리 기능이 있는 것으로 알려져 있다. 본 연구에서는 LNCap 인체 전립선 암세포 모델을 이용하여 cordycepin에 의한 항암활성 기전을 연구하였다. Cordycepin 처리에 따라 LNCap 세포는 처리 농도 의존적으로 증식이 억제되었으며, 이는 apoptosis 유발과 연관성이 있음을 poly ADP-ribose polymerase의 단편화 현상과 Annexin V 염색에 의한 정량적 분석으로 확인하였다. Cordycepin 처리에 따른 flow cytometric analysis 결과로서 cordycepin이 세포주기 G2/M기 정체 현상을 유발하였음을 알 수 있었으며, 이는 cyclin B1 및 cyclin A의 발현 감소와 연관성이 있었다. 또한 cordycepin이 처리된 LNCap 세포에서 cyclin-dependent kinase (CDK) inhibitor p21Waf1/Cip1의 발현이 증가되었지만, CDK2, CDC2 및 Cdc25C의 발현에는 큰 영향을 미치지 않았으며, cordycepin에 의하여 증가된 p21 단백질은 CDK2 및 CDC2와의 복합체를 형성하고 있었다. 본 연구의 결과는 LNCap 전립선 암세포에서 cordycepin에 의한 G2/M 및 apoptosis 유발은 p53 비존적인 CDK inhibitor p21의 발현 증가가 중요한 역할을 하고 있음을 보여주는 것이다.

NF-Y binds to both G1- and G2-specific cyclin promoters; a possible role in linking CDK2/Cyclin A to CDK1/Cyclin B

  • Chae, Hee-Don;Kim, Jung-Bin;Shin, Deug-Y.
    • BMB Reports
    • /
    • 제44권8호
    • /
    • pp.553-557
    • /
    • 2011
  • We previously reported that CDK2/Cyclin A can phosphorylate and activate the transcription factor NF-Y. In this study, we investigated a potential regulatory role for NF-Y in the transcription of Cyclin A and other cell cycle regulatory genes. Gel-shift assays demonstrate that NF-Y binds to CCAAT sequences in the Cyclin A promoter, as well as to those in the promoters of cell cycle G2 regulators such as CDC2, Cyclin B and CDC25C. Furthermore, expression of Cyclin A increases NF-Y's affinity for CCAAT sequences in the CDC2 promoter; however, Cyclin A's induction of CDC2 transcription is antagonized by p21, an inhibitor of CDK2/Cyclin A. These results suggest a model wherein NF-Y binds to and activates transcription from the Cyclin A promoter, increasing cellular levels of Cyclin A/CDK2 and potentiating NF-Y's capacity for transcriptional transactivation, and imply a positive feedback loop between NF-Y and Cyclin A/CDK2. Our findings are additionally indicative of a role for Cyclin A in activating Cyclin B/CDK1 through promoting NF-Y dependent transcription of Cyclin B and CDC2; NF-Y mediated crosstalk may therefore help to orchestrate cell-cycle progression.