• Title/Summary/Keyword: CDCA

Search Result 23, Processing Time 0.024 seconds

Compositional Change of Hepatic Bile Acid by Multiple Administration of DWP305, a Combined Preparation Containing Ursodeoxycholic Acid and Silymarin, in Rats (흰쥐에서 Ursodeoxycholic Acid 및 Silymarin을 함유한 의약조서울(DWP305)의 연용투여에 의한 간내 담즙산 조성변화)

  • Cho, Jae-Youl;Yeon, Je-Deuk;Nam, Kweon-Ho;Kim, Jeum-Yong;Yoo, Eun-Sook;Yu, Young-Hyo;Park, Myung-Hwan
    • YAKHAK HOEJI
    • /
    • v.40 no.3
    • /
    • pp.311-319
    • /
    • 1996
  • DWP305, a preparation containing combination of ursodeoxycholic acid(UDCA), silymarin and vitamins ($B_1\;and\;B_2$), is a drug currently being developed for hep atic disorders. In order to evaluate the changes in hepatic function by multiple oral administration(2 and 4 weeks) of DWP305 in rats, several biochemical parameters in blood, bile acid composition, and the accumulation of UDCA and lithocholic acid(LCA),a toxic metabolite formed by enterobacteria, were examined using HPLC. In blood biochemical findings, DWP305 did not affect the normal level and there was no difference in total bile acid composition for UDCA, cholic acid(CA), deoxycholic acid(DCA), chenodeoxycholic acid(CDCA) and LCA compared to the UDCA administered group, although total ratio of UDCA and CA was different from normal group. In case of ratio of taurine and glycine conjugated forms, DWP305(186mg/kg as a UDCA) administered group was also similar to normal group and UDCA administered group, while high dosing of DWP305 was not different in the ratio of UDCA administered group(930mg/kg) but normal group. And the ratio of LCA was in order of UDCA(930mg/kg), DWP305(930mg/kg as a UDCA), UDCA(186mg/kg) and DWP305(186mg/kg as a UDCA) administered group, which was less than 4%. The free form of UDCA as well as most of bile acids was not detected at all in rat liver, indicating that there's no accumulation. These results suggest that multiple dosing of DWP305 in rats may not affect hepatic biotransformation and metabolism of bile acids.

  • PDF

Apoptotic Effect of co-treatment with HS-1200 and Cisplatin on SCC25 Human Tongue Squamous Cell Carcinoma Cell Line (HS-1200과 cisplatin의 병용처리가 사람구강암세포에 미치는 세포자멸사 효과에 대한 연구)

  • Kim, Duk-Han;Kim, In-Ryoung;Park, Bong-Soo;Ahn, Yong-Woo;Jeong, Sung-Hee
    • Journal of Oral Medicine and Pain
    • /
    • v.38 no.3
    • /
    • pp.221-233
    • /
    • 2013
  • Bile acids are polar derivatives of cholesterol essential for the absorption of dietary lipids and regulate the transcription of genes that control cholesterol homeostasis. Recently it have been identified the synthetic chenodeoxycholic acid (CDCA) derivatives HS-1200 and cisplatin showed apoptisis-inducing activity on various cancer cells in vivo and in vitro. This study was undertaken to investigate the synergistic apoptotic effect of co-treatment with HS-1200 and cisplatin on human tongue squamous cell carcinoma cells (SCC25 cells). To investigate whether the co-treatment with HS-1200 and cisplatin compared to each single treatment efficiently reduces the viability of SCC25 cells, MTT assay was conducted. The induction and augmentation of apoptosis were confirmed by DNA electrophoresis, Hoechst staining and an analysis DNA hypoploidy. Westen blot analysis and immunofluorescent staining were also performed to evaluate the expression levels and the translocation of apoptosis-related proteins following this co-treatment. Furthermore, proteasome activity and mitochondrial membrane potential (MMP) change were also assayed. In this study, co-treatment with HS-1200 and cisplatin on SCC25 cells showed several lines of apoptotic manifestation such as nuclear condensations, DNA fragmentation, reduction of MMP and proteasome activity, the increase of Bax and the decrease of Bcl-2, decrease of DNA content, the release of cytochrome c into cytosol, translocation of AIF and DFF40 (CAD) onto nuclei, and activation of caspase-9, caspase-7, caspase-3, PARP and DFF45 (ICAD) whereas each single treated SCC25 cells did not show these patterns. Although the single treatment of $25{\mu}M$ HS-1200 and $4{\mu}g/ml$ cisplatin for 24 h did not induce apoptosis, the co-treatment of these reagents prominently induced apoptosis. Therefore our data provide the possibility that the combination therapy with HS-1200 and cisplatin could be considered as a novel therapeutic strategy for human squamous cell carcinoma.

A Novel Chenodeoxycholic Derivative HS-1200 Enhances Radiation-induced Apoptosis in Human MCF-7 Breast Cancer Cells (담즙산 합성유도체(HS-1200)가 인체 유방암 세포주(MCF-7)에서 유도하는 방사선 감작 효과)

  • Lee Hyung Sik;Choi Young Min;Kwon Hyuk Chan;Song Yeon Suk
    • Radiation Oncology Journal
    • /
    • v.22 no.2
    • /
    • pp.145-154
    • /
    • 2004
  • Purpose : To examine whether a synthetic bile acid derivatives (HS-1200) sensitizes the radiation-induced apoptosis in human breast cancer cells (MCF-7) and to investigate the underlying mechanism. Materials and Methods : Human breast cancer cells (MCF-7) in exponential growth phase were treated with HS-1200 for 24 hours at 37$^{\circ}C$ with 5$\%$ CO$_{2}$ in air atmosphere. After removal of HS-1200, cells were irradiated with 2$\~$8 Gy X-ray, and then cultured Ii drug-free media for 24-96 hours. The effect of radiation on the clonogenicity of MCF-7 cells was determined with clonogenic cell survival assay with 16$\mu$M of HS-1200. The induction of apoptosis was determined using agarose gel electrophoresis and Hoechst staining. The expression level of apoptosis-related molecules, such as PARP, Bax, Bcl-2, Bak and AIF, were assayed by Western blotting analysis with 40$\mu$M of HS-1200 combined with 8 Gy irradiation. To examine the cellular location of cytochrome c, bax and AIF immunofluorescent stainings were undertaken. Results : Treatment of MCF-7 cells with 40$\mu$M of HS-1200 combined with 8 Gy irradiation showed several changes associated with enhanced apoptosis by agarose gel electrophoresis and Hoechst staining. HS-1200 combined with 8 Gy irradiation treatment also enhanced production of PARP cleavage products and increased Bax/Bcl-2 ratio by Western blotting. Loss of mitochondrial membrane potential ($\Delta$$\psi$$_{m}$) and increased cytochrome c staining indicated that cytochrome c had been released from the mitochondria in HS-1200 treated cells. Conclusion : We demonstrated that combination treatment with a synthetic chenodeoxycholic acid derivative HS-1200 and irradiation enhanced radiation-induced apoptosis of human breast cancer cells (MCF-7). We suggest that the increased Bax/Bcl-2 ratio In HS-1200 co-treatment group underlies the increased radio sensitivity of MCF-7 cells. Further futures studies are remained elusive.