• Title/Summary/Keyword: CDC damper

Search Result 6, Processing Time 0.029 seconds

Phenomenological Damping Flow Modeling and Performance Evaluation for a Continuous Damping Control Damper Using MR Fluid (MR 유체를 이용한 연속 감쇠력 가변형 댐퍼를 위한 감쇠유동의 현상학적 모델링과 성능평가)

  • Park, Jae-Woo;Jung, Young-Dae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.3
    • /
    • pp.73-82
    • /
    • 2008
  • Recently MR CDC damper has been applied to semi-active suspension control system gradually. Compared to former hydraulic CDC damper, it has rapid time response performance as well as simple internal structure and wide range of damping force. In order to develop control logic algorithm which enables to take maximum advantage of unique characteristics of MR CDC damper, it is inevitable to perform a thorough investigation into its nonlinear performance. In many previous researches, MR fluid model was either simply assumed as Bingham Plastic, or a phenomenological model based on experiment was established instead to predict damping performance of MR CDC damper. These experimental flow model which is not based on flow analysis but intentionally built to fit damping characteristics, may lead to totally different results in case of different configuration or structure of MR CDC damper. In this study, a generalized flow formula from mathematical flow model of MR fluid for annular orifice is derived to analyze and predict damping characteristics when current is excited at piston valve.

High Tunable Control Algorithm for Semi-active Suspension by a Normal Type CDC Damper (연속 가변 댐퍼에 의한 반능동 현가장치의 고 자유도 제어기)

  • Choi, Ju-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.11
    • /
    • pp.1096-1103
    • /
    • 2010
  • This paper proposes CDC (Continuous Damping Control) algorithm and verifies in multi-body dynamic vehicle. In order to distinguish a road profile on driving, waviness calculated by the filtered vertical-accelerations of sprung and unsprung masses is introduced. Sky-hook control is used at a low waviness road and constant damping level control is used at a high waviness road, where the hard damping level is determined by waviness, roll rate, acceleration, and deceleration. The damping levels of ride, anti-roll, anti-squat, and anti-dive modules are calculated by tuning parameters which is dependent upon vehicle velocity. Therefore this high tunable algorithm is useful to improve the ride and handling performance under various driving conditions. In the simulations, tire and dampers are modelled by SWIFT (Short Wavelength Intermediate Frequency Tire) model and 1st order delay model, and results are compared with conventional damper's.

Magnetic Circuit Design Methodology of MR CDC Dampers for Semi-Active Suspensions (반능동 서스펜션용 MR CDC 댐퍼의 자기회로 설계기법)

  • Park, Jae-Woo;Jung, Young-Dae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.10
    • /
    • pp.48-57
    • /
    • 2008
  • MR Fluid, one of functional fluids, is developed for the application to automobile products. MR CDC damper using MR fluid has following principles. When ar electric current is applied to the solenoid, apparent viscosity of MR fluid passing through the annular gap which acts as magnetic circuits varies directly as the intensity of the current. These devices have a simple structure and excellent lime response characteristics, emerging as the alternatives of the conventional semi-active suspension systems. In this study, a design procedure of the magnetic circuit through the solenoid fore and the flux ring functioning as a magnetic path is investigated so as to optimize the design and performance of MR CDC dampers for the vehicles. In addition, an operating point on the B-H curve, the magnetization according to the variation in the annular gap, the pole piece width and the density of MR fluid are studied to design the optimal piston head within the restrained dimension range.

Hydropneumatic Modeling and Dynamic Characteristic Analysis of a Heavy Truck Semi-active Cabin Air Suspension System (대형 트럭 반능동형 캐빈 공기 현가시스템의 유공압 모델링 및 동특성 해석)

  • Lee, Kwang-Heon;Jeong, Heon-Sul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.2
    • /
    • pp.57-65
    • /
    • 2011
  • In this paper, a hydropneumatic modeling and dynamic analysis of a heavy truck semi-active cabin air suspension system is presented. Semi-active cabin air suspension system improves driver's ride comfort by controlling the damping characteristics in accordance with driving situation. So it can reduce vibration between truck frame and cabin. Semi-active cabin air suspension system is consist of air spring, leveling valve and CDC shock absorber, and full cabin system are mathematically modelled using AMESim software. Simulation results of components and full cabin system are compared with experimental data of components and test results of a cabin using 6 axis simulation table. It is found that the simulation results are in good agreements with test results, and the hydropneumatic model can be used well to predict dynamic characterics of heavy truck semi-active cabin air suspension system.