• Title/Summary/Keyword: CD56 Antigen

Search Result 18, Processing Time 0.025 seconds

Clinical Significance of Co-expression of Aberrant Antigens in Acute Leukemia: A Retrospective Cohort Study in Makah Al Mukaramah, Saudi Arabia

  • Abdulateef, Nahla Ahmad Bahgat;Ismail, Manar Mohammad;Aljedani, Hanadi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.1
    • /
    • pp.221-227
    • /
    • 2014
  • Background: Aberrant phenotypes in acute leukemia have variable frequency and their prognostic and predictive relevance is controversial, despite several reports of clinical significance. Aims: To determine the prevalence of aberrant antigen expression in acute leukemia, assess clinical relevance and demonstrate immunophenotype-karyotype correlations. Materials and Methods: A total of 73 (40 AML and 33 ALL) newly diagnosed acute leukemia cases presenting to KAMC, Kingdom of Saudi Arabia, were included. Diagnosis was based on WHO criteria and FAB classification. Immunophenotyping by flow cytometry, conventional karyotyping and fluorescence in situ hybridization for gene rearrangements were performed. Results: Aberrant antigens were detected in 27/40 (67.5%) of AML and in 14/33 (42.4%) in ALL cases. There were statistically significant higher TLC in Ly+ AML than in Ly-AML (p=0.05) and significant higher blast count in ALL with aberrant antigens at presentation and day 14 (p=0.005, 0.046). There was no significant relation to clinical response, relapse free survival (RFS) or overall survival (p>0.05), but AML cases expressing ${\geq}2$ Ly antigens showed a lower median RFS than those expressing a single Ly antigen. In AML, CD 56 was expressed in 11/40. CD7 was expressed in 7/40, having a significant relation with an unfavorable cytogenetic pattern (p=0.046). CD4 was expressed in 5/40. CD19 was detected in 4/40 AML associated with M2 and t (8; 21). In ALL cases, CD33 was expressed in 7/33 and CD13 in 5/33. Regarding T Ag in B-ALL CD2 was expressed in 2 cases and CD56 in 3 cases. Conclusions: Aberrant antigen expression may be associated with adverse clinical data at presentation. AML cases expressing ${\geq}2$ Ly antigens may have shorter median RFS. No specific cytogenetic pattern is associated with aberrant antigen expression but individual antigens may be related to particular cytogenetic patterns. Immunophenotype-karyotype correlations need larger studies for confirmation.

HLA-restricted and Antigen-specific CD8+ T Cell Responses by K562 Cells Expressing HLA-A*0201

  • Yun, Sun-Ok;Sohn, Hyun-Jung;Yoon, Sung-Hee;Choi, Hee-Baeg;Kim, Tai-Gyu
    • IMMUNE NETWORK
    • /
    • v.6 no.4
    • /
    • pp.179-184
    • /
    • 2006
  • Background: Identification of antigen-specific T cells has yielded valuable information on pathologic process and the disease state. Assays for quantification of inflammatory cytokines or lytic-granule molecules have been generally used to evaluate antigen specific T cell response, however their applicability have been hampered due to the limited source of autologous antigen-presenting target cells (APC). Methods: K562, a leukemic cell line deficient of human leukocyte antigen (HLA), was transfected with a gene encoding HLA-A*02 (K562/ A*02) and its function as stimulator cells in inducing activation of HLA-matched T cells was evaluated by IFN-${\gamma}$ enzyme linked immunospot (ELISPOT) assay. Results: The stable transfectant K562/ A*02 pulsed with HLA- A*02 restricted peptide could specifically induce IFN-${\gamma}$ secretion by CD8+ T cells compared to no detectable secretion by CD4+ T cells. However, CD56+ NK cells secreted IFN-${\gamma}$ in both K562/ A*02 with peptide and without peptide. The number of IFN-${\gamma}$ secreted CD8+ T cells was increased according to the ratio of T cells to K562 and peptide concentration. Formalin-fixed K562/ A*02 showed similar antigen presenting function to live K562/ A*02. Moreover, K562/ A*02 could present antigenicpeptide to not only A*0201 restricted CD8+ T cells but also CD8+ T cells from A*0206 donor. Conclusion: These results suggest that K562/ A*02 could be generally used as target having specificity and negligible background for measuring CD8+ T cell responses and selective use of K562 with responsder matched HLA molecules on its surface as APC may circumvent the limitation of providing HLA-matched autologous target cells.

TNF$\beta$ Induces Cytotoxicity of Antibody-Activated CD$4^+$T-lymphocytes Against Herpes Virus-Infected Target Cells

  • Choi, Sang Hoon
    • Animal cells and systems
    • /
    • v.8 no.2
    • /
    • pp.125-133
    • /
    • 2004
  • We have extended our previous work that cross-linking CD4 molecules using specific MAb induced antigen nonspecific, MHC unrestricted killing of virally infected target cells by CD$4^+$We have extended our previous work that cross-linking CD$4^+$ molecules using specific MAb induced antigen nonspecific, MHC unrestricted killing of virally infected target cells by CD$4^+$ T cells. The killing activity of antibody activated CD$4^+$T cells was completely blocked by herbimycin A, a protein tyrosine kinase (PTK) inhibitor, but not by bisindolylamaleimide, a protein kinase C (PKC) inhibitor. Herbimycin A treated human or bovine peripheral blood CD$4^+$T cells lacked PTK activity and failed to kill virally infected target cells even after cross-linking of CD4 molecules. The CD$4^+$cross-linking failed to induce effector cell proliferation or the transcription of TNF${\beta}$ Upregulation of TNF${\beta}$ was induced by incubating the antibody activated effector cells with BHV-1 infected D17 target cells for 10 h. Anti-TNF${\beta}$ antibody partially abolished (13-44%) the direct effector cell-mediated antiviral cytotoxicity. However, this antibody neutralized 70 to 100% of antiviral activity of effector and target cell culture supernatants against BHV-1 infected D17 cells. The inhibition level of the antiviral activity by the antibody was dependent on the effector and target cell ratio. These results support the hypothesis that increased p$56^ICK enzyme activity in effector cells transduces a signal critical for effector cell recognition of viral glycoproteins expressed on the target cells. Following target cell recognition, lytic cytokines known to participate in target cell killing were produced. A better understanding of the killing activity displayed by CD$4^+$T lymphocytes following surface receptor cross-linking will provide insight into the mechanisms of cytotoxic activity directed toward virally-infected cells.T cells. The killing activity of antibody activated CD$4^+$T cells was completely blocked by herbimycin A, a protein tyrosine kinase (PTK) inhibitor, but not by bisindolylamaleimide, a protein kinase C (PKC) inhibitor. Herbimycin A treated human or bovine peripheral blood CD4T cells lacked PTK activity and failed to kill virally infected target cells even after cross-linking of CD4molecules. The CD4 cross-linking failed to induce effector cell proliferation or the transcription of TNF$\beta$. Upregulation of TNF$\beta$ was induced by incubating the antibody activated effector cells with BHV-1 infected D17 target cells for 10 h. Anti-TNF$\beta$ antibody partially abolished (13-44%) the direct effector cell-mediated antiviral cytotoxicity. However, this antibody neutralized 70 to 100% of antiviral activity of effector and target cell culture supernatants against BHV-1 infected D17 cells. The inhibition level of the antiviral activity by the antibody was dependent on the effector and target cell ratio. These results support the hypothesis that increased $56^ICK enzyme activity in effector cells transduces a signal critical for effector cell recognition of viral glycoproteins expressed on the target cells. Following target cell recognition, lytic cytokines known to participate in target cell killing were produced. A better understanding of the killing activity displayed by CD$4^+$T lymphocytes following surface receptor cross-linking will provide insight into the mechanisms of cytotoxic activity directed toward virally-infected cells.

CD4+ cytotoxic T cells: an emerging effector arm of anti-tumor immunity

  • Seongmin Jeong;Nawon Jang;Minchae Kim;Il-Kyu Choi
    • BMB Reports
    • /
    • v.56 no.3
    • /
    • pp.140-144
    • /
    • 2023
  • While CD8+ cytotoxic T cells have long been considered the primary effector in controlling tumors, the involvement of CD4+ "helper" T cells in anti-tumor immunity has been underappreciated. The investigations of intra-tumoral T cells, fueled by the recent advances in genomic technologies, have led to a rethinking of the indirect role of CD4+ T cells that have traditionally been described as a "helper". Accumulating evidence from preclinical and clinical studies indicates that CD4+ T cells can acquire intrinsic cytotoxic properties and directly kill various types of tumor cells in a major histocompatibility complex class II (MHC-II)-dependent manner, as opposed to the indirect "helper" function, thus underscoring a potentially critical contribution of CD4+ cytotoxic T cells to immune responses against a wide range of tumor types. Here, we discuss the biological properties of anti-tumor CD4+ T cells with cytotoxic capability and highlight the emerging observations suggesting their more significant role in anti-tumor immunity than previously appreciated.

Human CD8+ T-Cell Populations That Express Natural Killer Receptors

  • June-Young Koh;Dong-Uk Kim;Bae-Hyeon Moon;Eui-Cheol Shin
    • IMMUNE NETWORK
    • /
    • v.23 no.1
    • /
    • pp.8.1-8.13
    • /
    • 2023
  • CD8+ T cells are activated by TCRs that recognize specific cognate Ags, while NK-cell activation is regulated by a balance between signals from germline-encoded activating and inhibitory NK receptors. Through these different processes of Ag recognition, CD8+ T cells and NK cells play distinct roles as adaptive and innate immune cells, respectively. However, some human CD8+ T cells have been found to express activating or inhibitory NK receptors. CD8+ T-cell populations expressing NK receptors straddle the innate-adaptive boundary with their innate-like features. Recent breakthrough technical advances in multi-omics analysis have enabled elucidation of the unique immunologic characteristics of these populations. However, studies have not yet fully clarified the heterogeneity and immunological characteristics of each CD8+ T-cell population expressing NK receptors. Here we aimed to review the current knowledge of various CD8+ T-cell populations expressing NK receptors, and to pave the way for delineating the landscape and identifying the various roles of these T-cell populations.

Cytotoxicity of Anti-CD4 Antibody Activated $CD4^+$ T-Lymphocytes against Herpesvirus-Infected Target Cells is Dependent on $p56^{lck}$ and $p59^{fyn}$ Protein Tyrosine Kinase Activity

  • Choi, Sang-Hoon;Jang, Yong-Suk;Oh, Chan-Ho
    • BMB Reports
    • /
    • v.31 no.4
    • /
    • pp.355-363
    • /
    • 1998
  • MHC unrestricted, antigen nonspecific killing by $CD4^+$ T-cells against virally-infected target cells was induced following cross-linking of CD4 molecules. The cytotoxicity of antibody-activated $CD4^+$ T-cells was abolished by genistein (4',5,7-trihydroxyisoflavone), a protein tyrosine kinase (PTK) inhibitor, but not by H-7, a protein kinase C (PKC) inhibitor. Genisteintreated human or bovine peripheral blood $CD4^+$ T-cells lacked PTK activity and failed to kill virally-infected target cells even after cross-linking of CD4 molecules. The cross-linking of CD4 molecules did not induce effector cell proliferation or the transcription of TNF ${\beta}$. TNF ${\beta}$ synthesis was up-regulated by incubating antibody activated effector cells with bovine herpesvirus type 1 (BHV-1) infected D17 target cells. Anti-TNF ${\beta}$ antibody partially abrogated direct effector cell-mediated antiviral cytotoxicity. On the other hand, this antibody effectively neutralized antiviral activity of effector and target cell culture supernatants against BHV-1 infected D17 cells. The inhibition level of the antiviral activity by the antibody was dependent on effector and target cell ratio. These findings have importance to define the mechanisms of how CD4 cytotoxic cells control viral infection.

  • PDF

The Detection of ICD p24 Antigen Predicts Bad Prognosis in HIV-1 Infected Patients (인면역결핍바이러스 감염자에서 ICD-p24 항원 탐지가 CD4+T 세포수 및 예후에 미치는 영향)

  • Cho, Young-Keol;Lee, Hee-Jung
    • The Journal of Korean Society of Virology
    • /
    • v.26 no.2
    • /
    • pp.259-267
    • /
    • 1996
  • In order to evaluate the effect of viral load on the prognosis of human immunodeficiency virus-1 (HIV-1)-infected individuals, immune complex dissociated (ICD) serum p24 antigen (p24) by acid treatment was retrospectively measured for 50 HIV-infected patients for 60 months. Among them, 27 patients were p24 positive (p24+) above 25pg/ml for $40.4{\pm}12$ months and 23 patients were negative (p24-). Follow-up periods from HIV diagnosis were $63.0{\pm}19$ months (range; 40-112) for the p24+ and $68.4{\pm}19$ months (range; 38-106) for the p24-, respectively (P>0.05)Mean CD4+T cell counts in the p24+ group decreased from $473{\pm}$277/ul (median;373) to $157{\pm}150/ul$ (median; 111) for $60{\pm}16$ months (5.3/month P280/ul (median; 476) to $432{\pm}285/ul$ (median;382) for $63{\pm}19$ months (2.5/month, P<0.01). From CD4+T cell count >200/ul, the patient who progressed to AIDS of <200/ul were 13 of 23 (56%) in the p24+ and 4 of 22 (18%) in p24-, respectively (p<0.01). And the number of death in two groups were 6 (22%) and 1 (4%), respectively (p<0.01). Presumed survival in two groups were about 12 and 24.5 years. These data suggest that viral load itself be very important for the prognosis of HIV-infected patients.

  • PDF

Immune Responses Induced by HSP60 DNA Vaccine against Toxoplasma gondii Infection in Kunming Mice

  • Li, Zhong-Yuan;Lu, Jing;Zhang, Nian-Zhang;Chen, Jia;Zhu, Xing-Quan
    • Parasites, Hosts and Diseases
    • /
    • v.56 no.3
    • /
    • pp.237-245
    • /
    • 2018
  • Toxoplasma gondii can infect all the vertebrates including human, and leads to serious toxoplasmosis and considerable veterinary problems. T. gondii heat shock protein 60 (HSP60) is associated with the activation of antigen presenting cells by inducing initial immune responses and releasing inflammatory cytokines. It might be a potential DNA vaccine candidate for this parasite. A pVAX-HSP60 DNA vaccine was constructed and immune responses was evaluated in Kunming mice in this study. Our data indicated that the innate and adaptive immune responses was elicited by successive immunizations with pVAX-HSP60 DNA, showing apparent increases of CD3e+CD4+ and CD3e+CD8a+ T cells in spleen tissues of the HSP60 DNA-immunized mice ($24.70{\pm}1.23%$ and $10.90{\pm}0.89%$, P<0.05) and higher levels of specific antibodies in sera. Furthermore, the survival period of the immunized mice ($10.53{\pm}4.78day$) were significantly prolonged during the acute T. gondii infection. Decrease of brain cysts was significant in the experimental group during the chronic infection (P<0.01). Taken together, TgHSP60 DNA can be as a vaccine candidate to prevent the acute and chronic T. gondii infections.

Immune cell-derived small extracellular vesicles in cancer treatment

  • Choi, Sung-Jin;Cho, Hanchae;Yea, Kyungmoo;Baek, Moon-Chang
    • BMB Reports
    • /
    • v.55 no.1
    • /
    • pp.48-56
    • /
    • 2022
  • Small extracellular vesicles (sEVs) secreted by most cells carry bioactive macromolecules including proteins, lipids, and nucleic acids for intercellular communication. Given that some immune cell-derived sEVs exhibit anti-cancer properties, these sEVs have received scientific attention for the development of novel anti-cancer immunotherapeutic agents. In this paper, we reviewed the latest advances concerning the biological roles of immune cell-derived sEVs for cancer therapy. sEVs derived from immune cells including dendritic cells (DCs), T cells, natural-killer (NK) cells, and macrophages are good candidates for sEV-based cancer therapy. Besides their role of cancer vaccines, DC-shed sEVs activated cytotoxic lymphocytes and killed tumor cells. sEVs isolated from NK cells and chimeric antigen receptor (CAR) T cells exhibited cytotoxicity against cancer cells. sEVs derived from CD8+ T and CD4+ T cells inhibited cancer-associated cells in tumor microenvironment (TME) and activated B cells, respectively. M1-macrophage-derived sEVs induced M2 to M1 repolarization and also created a pro-inflammatory environment. Hence, these sEVs, via mono or combination therapy, could be considered in the treatment of cancer patients in the future. In addition, sEVs derived from cytokine-stimulated immune cells or sEV engineering could improve their anti-tumor potency.

Comprehensive Analysis of Epstein-Barr Virus LMP2A-Specific CD8+ and CD4+ T Cell Responses Restricted to Each HLA Class I and II Allotype Within an Individual

  • Hyeong-A Jo;Seung-Joo Hyun;You-Seok Hyun;Yong-Hun Lee;Sun-Mi Kim;In-Cheol Baek ;Hyun-Jung Sohn;Tai-Gyu Kim
    • IMMUNE NETWORK
    • /
    • v.23 no.2
    • /
    • pp.17.1-17.16
    • /
    • 2023
  • Latent membrane protein 2A (LMP2A), a latent Ag commonly expressed in Epstein-Barr virus (EBV)-infected host cells, is a target for adoptive T cell therapy in EBV-associated malignancies. To define whether individual human leukocyte antigen (HLA) allotypes are used preferentially in EBV-specific T lymphocyte responses, LMP2A-specific CD8+ and CD4+ T cell responses in 50 healthy donors were analyzed by ELISPOT assay using artificial Ag-presenting cells expressing a single allotype. CD8+ T cell responses were significantly higher than CD4+ T cell responses. CD8+ T cell responses were ranked from highest to lowest in the order HLA-A, HLA-B, and HLA-C loci, and CD4+ T cell responses were ranked in the order HLA-DR, HLA-DP, and HLA-DQ loci. Among the 32 HLA class I and 56 HLA class II allotypes, 6 HLA-A, 7 HLA-B, 5 HLA-C, 10 HLA-DR, 2 HLA-DQ, and 2 HLA-DP allotypes showed T cell responses higher than 50 spot-forming cells (SFCs)/5×105 CD8+ or CD4+ T cells. Twenty-nine donors (58%) showed a high T cell response to at least one allotype of HLA class I or class II, and 4 donors (8%) had a high response to both HLA class I and class II allotypes. Interestingly, we observed an inverse correlation between the proportion of LMP2A-specific T cell responses and the frequency of HLA class I and II allotypes. These data demonstrate the allele dominance of LMP2A-specific T cell responses among HLA allotypes and their intra-individual dominance in response to only a few allotypes in an individual, which may provide useful information for genetic, pathogenic, and immunotherapeutic approaches to EBV-associated diseases.