• Title/Summary/Keyword: CD4 cell

Search Result 1,285, Processing Time 0.025 seconds

Effects of Mizoribine on MHC-Restricted Exogenous Antigen Presentation in Dendritic Cells

  • Song, Young-Cheon;Han, Shin-Ha;Kim, Hyun-Yul;Kim, Kwang-Hee;Kwon, Jeung-Hak;Lee, Sang-Jin;Ha, Nam-Joo;Lee, Young-Hee;Lee, Chong-Kil;Kim, Kyung-Jae
    • Archives of Pharmacal Research
    • /
    • v.29 no.12
    • /
    • pp.1147-1153
    • /
    • 2006
  • Mizoribine (MZR) has been shown to possess immunosuppressive activity that selectively inhibits the proliferation of lymphocytes by interfering with inosine monophosphate dehydrogenase. The efficacy of MZR is not only in patients who have had renal transplantation, but also in patients with rheumatoid arthritis (RA), lupus nephritis, and primary nephritic syndrome. Because the exact mechanism of its immunosuppressive action is not clear, the object of this study was to examine the ability of MZR to regulate the antigen presenting cells (APCs), dendritic cells (DCs). In this work, we tested whether MZR ($1{\sim}10\;{\mu}g/mL$) could inhibit the cross-presentation of DCs. DC2.4 cells ($H-2K^{b}$) or bone marrow-derived DCs (BM-DCs) generated from BM cells of C57BL/6 mouse ($H-2K^{b}$) were cultured in the presence of MZR with OVA-microspheres, and the amount of OVA peptide-class I MHC complexes was measured by a T cell hybridoma, B3Z, that recognizes OVA (257-264 : SIINFEKL)-$H-2K^{b}$ complex and expresses-galactosidase. MZR profoundly inhibited the expression of SIINFEKL-$H-2K^{b}$ complexes. This inhibitory activity of MZR appeared to affect the phagocytic activity of DCs. MZR also decreased IL-2 production when we examined the effects of MZR on $CD4^{+}$ T cells. These results provide an understanding of the mechanism of immunosuppressive activity of MZR on the inhibition of MHC-restricted antigen presentation and phagocytic activity in relation to their actions on APCs.

Anti-proliferative and angio-suppressive effect of Stoechospermum marginatum (C. Agardh) Kutzing extract using various experimental models

  • Vinayak, Rashmi;Puttananjaiah, Shilpa;Chatterji, Anil;Salimath, Bharati
    • Nutrition Research and Practice
    • /
    • v.8 no.4
    • /
    • pp.377-385
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: Abundant consumption of seaweeds in the diet is epidemiologically linked to the reduction in risk of developing cancer. In larger cases, however, identification of particular seaweeds that are accountable for these effects is still lacking, hindering the recognition of competent dietary-based chemo preventive approaches. The aim of this research was to establish the antiproliferative potency and angiosuppressive mode of action of Stoechospermum marginatum seaweed methanolic extract using various experimental models. MATERIALS/METHODS: Among the 15 seaweeds screened for antiproliferative activity against Ehrlich ascites tumor (EAT) cell line, Stoechospermum marginatum extract (SME) was found to be the most promising. Therefore, it was further investigated for its anti-proliferative activity in-vitro against choriocarcinoma (BeWo) and non-transformed Human embryonic kidney (HEK 293) cells, and for its anti-migratory/tube formation activity against HUVEC cells in-vitro. Subsequently, the angiosuppressive activity of S. marginatum was established by inhibition of angiogenesis in in-vivo (peritoneal angiogenesis and chorioallantoic membrane assay) and ex-vivo (rat cornea assay) models. RESULTS: Most brown seaweed extracts inhibited the proliferation of EAT cells, while green and red seaweed extracts were much less effective. According to the results, SME selectively inhibited proliferation of BeWo cells in-vitro in a dose-dependent manner, but had a lesser effect on HEK 293 cells. SME also suppressed the migration and tube formation of HUVEC cells in-vitro. In addition, SME was able to suppress VEGF-induced angiogenesis in the chorio allantoic membrane, rat cornea, and tumor induced angiogenesis in the peritoneum of EAT bearing mice. A decrease in the microvessel density count and CD31 antigen staining of treated mice peritoneum provided further evidence of its angiosuppressive activity. CONCLUSIONS: Altogether, the data underline that VEGF mediated angiogenesis is the target for the angiosuppressive action of SME and could potentially be useful in cancer prevention or treatment involving stimulated angiogenesis.

Molecular Cloning, Purification, and Characterization of a Cold-Adapted Esterase from Photobacterium sp. MA1-3

  • Kim, Young-Ok;Heo, Yu Li;Nam, Bo-Hye;Kim, Dong-Gyun;Jee, Young-Ju;Lee, Sang-Jun;An, Cheul-Min
    • Fisheries and Aquatic Sciences
    • /
    • v.16 no.4
    • /
    • pp.311-318
    • /
    • 2013
  • The gene encoding an esterase from Photobacterium sp. MA1-3 was cloned in Escherichia coli using the shotgun method. The amino acid sequence deduced from the nucleotide sequence (948 bp) corresponded to a protein of 315 amino acid residues with a molecular weight of 35 kDa and a pI of 6.06. The deduced protein showed 74% and 68% amino acid sequence identities with the putative esterases from Photobacterium profundum SS9 and Photobacterium damselae, respectively. Absence of a signal peptide indicated that it was a cell-bound protein. Sequence analysis showed that the protein contained the signature G-X-S-X-G included in most serine-esterases and lipases. The MA1-3 esterase was produced in both soluble and insoluble forms when E. coli cells harboring the gene were cultured at $18^{\circ}C$. The enzyme was a serine-esterase and was active against $C_2$, $C_4$, $C_8$ and $C_{10}$ p-nitrophenyl esters. The optimum pH and temperature for enzyme activity were pH 8.0 and $30^{\circ}C$, respectively. Relative activity remained up to 45% even at $5^{\circ}C$ with an activation energy of 7.69 kcal/mol, which indicated that it was a cold-adapted enzyme. Enzyme activity was inhibited by $Cd^{2+}$, $Cu^{2+}$, $Zn^{2+}$, and $Hg^{2+}$ ions.

Molecular Analysis of AQP2 Promoter. I. cAMP-dependent Regulation of Mouse AQP2 Gene

  • Park, Mi-Young;Lee, Yong-Hwan;Bae, Hae-Rahn;Lee, Ryang-Hwa;Lee, Sang-Ho;Jung, Jin-Sup
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.2
    • /
    • pp.157-164
    • /
    • 1999
  • To determine molecular mechanisms of Aquaporin-CD (AQP2) gene regulation, the promoter region of the AQP2 gene was examined by transiently transfecting a promoter-luciferase reporter fusion gene into mouse renal collecting duct cell lines such as mIMCD-3, mIMCD-K2, and M-1 cells, and NIH3T3 mouse embryo fibroblast cells. PCR-Southern analysis reveals that mIMCD-3 and mIMCD-K2 cells express AQP2, but M-1 and NIH3T3 cells do not, and that the treatment with cpt-cAMP $(400\;{\mu}M)$) or forskolin/isobutylmethylxanthine (IBMX) increased the AQP2 expression in IMCD cells. In both IMCD and NIH3T3 cells, the constructs containing the promoter of AQP2 gene showed promoter activities, indicating lack of tissue-specific element in the 1.4 kb 5'-flanking region of the mouse AQP2 gene. Luciferase activity in the IMCD cells transfected with the construct containing 5-flanking region showed responsiveness to cpt-cAMP, indicating that the 1.4 kb 5'-flanking region contains the element necessary for the regulatory mechanism by cAMP. The promoter-luciferase constructs which do not have a cAMP-responsible element (CRE) still showed the cAMP responsiveness in IMCD cells, but not in NIH3T3 cells. Increase in medium osmolarity did not affect AQP2 promoter activity in mIMCD-K2 cells. These results demonstrate that AQP2 gene transcription is increased with cAMP treatment through multiple motifs including CRE in the 5'-flanking region of the gene in vitro, and the regulatory mechanism may be important for in vivo regulation of AQP2 expression.

  • PDF

Immunogenicity of a DNA and Recombinant Protein Vaccine Combining LipL32 and Loa22 for Leptospirosis Using Chitosan as a Delivery System

  • Umthong, Supawadee;Buaklin, Arun;Jacquet, Alain;Sangjun, Noppadol;Kerdkaew, Ruthairat;Patarakul, Kanitha;Palaga, Tanapat
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.4
    • /
    • pp.526-536
    • /
    • 2015
  • Leptospirosis is a worldwide zoonotic disease caused by pathogenic Leptospira, a genus of which more than 250 serovars have been identified. Commercial bacterin vaccines are limited in that they lack both cross-protection against heterologous serovars and long-term protection. This study investigated in mice the immunogenicity of an anti-leptospirosis vaccine, using the outer membrane proteins LipL32 and Loa22 as antigens. The immunogenicity of this vaccine formulation was compared with those induced by vaccines based on LipL32 or Loa22 alone. A DNA-encapsulated chitosan nanoparticle was used for in vivo DNA delivery. Using a unique DNA plasmid expressing both lipL32 and loa22 for vaccination, higher antibody responses were induced than when combining plasmids harboring each gene separately. Therefore, this formulation was used to test the immunogenicity when administered by a heterologous prime (DNA)-boost (protein) immunization regimen. The specific antibody responses against LipL32 (total IgG and IgG1) and Loa22 (IgG1) were higher in mice receiving two antigens in combination than in those vaccinated with a single antigen alone. Although no significant difference in splenic CD4+ T cell proliferation was observed among all groups of vaccinated mice, splenocytes from mice vaccinated with two antigens exhibited higher interferon-γ and IL-2 production than when using single antigens alone upon in vitro restimulation. Taken together, the immunogenicity induced by LipL32 and Loa22 antigens in a heterologous primeboost immunization regimen using chitosan as a DNA delivery system induces higher immune response, and may be useful for developing a better vaccine for leptospirosis.

Comparison of Interferon-γ Release Assays and the Tuberculin Skin Test for Diagnosis of Tuberculosis in Human Immunodeficiency Virus: A Systematic Review

  • Overton, Kristen;Varma, Rick;Post, Jeffrey J.
    • Tuberculosis and Respiratory Diseases
    • /
    • v.81 no.1
    • /
    • pp.59-72
    • /
    • 2018
  • Background: It remains uncertain if $interferon-{\gamma}$ release assays (IGRAs) are superior to the tuberculin skin test (TST) for the diagnosis of active tuberculosis (TB) or latent tuberculosis infection (LTBI) in immunosuppressed populations including people with human immunodeficiency virus (HIV) infection. The purpose of this study was to systematically review the performance of IGRAs and the TST in people with HIV with active TB or LTBI in low and high prevalence TB countries. Methods: We searched the MEDLINE database from 1966 through to January 2017 for studies that compared results of the TST with either the commercial QuantiFERON-TB Gold in Tube (QFTGT) assay or previous assay versions, the T-SPOT.TB assay or in-house IGRAs. Data were summarized by TB prevalence. Tests for concordance and differences in proportions were undertaken as appropriate. The variation in study methodology was appraised. Results: Thirty-two studies including 4,856 HIV subjects met the search criteria. Fourteen studies compared the tests in subjects with LTBI in low TB prevalence settings. The QFTGT had a similar rate of reactivity to the TST, although the first-generation version of that assay was reactive more commonly. IGRAs were more frequently positive than the TST in HIV infected subjects with active TB. There was considerable study methodology and population heterogeneity, and generally low concordance between tests. Both the TST and IGRAs were affected by CD4 T-cell immunodeficiency. Conclusion: Our review of comparative data does not provide robust evidence to support the assertion that the IGRAs are superior to the TST when used in HIV infected subjects to diagnose either active TB or LTBI.

Fate of Heavy Metals in Activated Sludge: Sorption of Heavy Metal ions by Nocardia amarae

  • Kim, Dong-wook
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 1998.10a
    • /
    • pp.2-4
    • /
    • 1998
  • Proliferation of Nocardia amarae cells in activated sludge has often been associated with the generation of nuisance foams. Despite intense research activities in recent years to examine the causes and control of Nocardia foaming in activated sludge, the foaming continued to persist throughout the activated sludge treatment plants in United States. In addition to causing various operational problems to treatment processes, the presence of Nocardia may have secondary effects on the fate of heavy metals that are not well known. For example, for treatment plants facing more stringent metal removal requirements, potential metal removal by Nocardia cells in foaming activated sludge would be a welcome secondary effect. In contrast, with new viosolid disposal regulations in place (Code o( Federal Regulation No. 503), higher concentration of metals in biosolids from foaming activated sludge could create management problems. The goal of this research was to investigate the metal sorption property of Nocardia amarae cells grown in batch reactors and in chemostat reactors. Specific surface area and metal sorption characteristics of N. amarae cells harvested at various growth stages were compared. Three metals examined in this study were copper, cadmium and nickel. Nocardia amarae strain (SRWTP isolate) used in this study was obtained from the University of California at Berkeley. The pure culture was grown in 4L batch reactor containing mineral salt medium with sodium acetate as the sole carbon source. In order to quantify the sorption of heavy metal ions to N amarae cell surfaces, cells from the batch reactor were harvested, washed, and suspended in 30mL centrifuge tubes. Metal sorption studies were conducted at pH 7.0 and ionlc strength of 10-2M. The sorption Isotherm showed that the cells harvested from the stationary and endogenous growth phase exhibited significantly higher metal sorption capacity than the cells from the exponential phase. The sequence of preferential uptake of metals by N. amarae cells was Cu>Cd>Ni. The specific surFace area of Nocardia cells was determined by a dye adsorption method. N.amarae cells growing at ewponential phase had significantly less specific surface area than that of stationary phase, indicating that the lower metal sorption capacity of Nocardia cells growing at exponential phase may be due to the lower specific surface area. The growth conditions of Nocardia cells in continuous culture affect their cell surface properties, thereby governing the adsorption capacity of heavy metal. The comparison of dye sorption isotherms for Nocardia cells growing at various growth rates revealed that the cell surface area increased with increasing sludge age, indicating that the cell surface area is highly dependent on the steady-state growth rate. The highest specific surface area of 199m21g was obtained from N.amarae cell harvested at 0.33 day-1 of growth rate. This result suggests that growth condition not only alters the structure of Nocardia cell wall but also affects the surface area, thus yielding more binding sites of metal removal. After reaching the steady-state condition at dilution rate, metal adsorption isotherms were used to determine the equilibrium distributions of metals between aqueous and Nocardia cell surfaces. The metal sorption capacity of Nocardia biomass harvested from 0.33 day-1 of growth rate was significantly higher than that of cells harvested from 0.5- and 1-day-1 operation, indicatng that N.amarae cells with a lower growth rate have higher sorpion capacity. This result was in close agreement with the trend observed from the batch study. To evaluate the effect of Nocardia cells on the metal binding capacity of activated sludge, specific surface area and metal sorption capacity of the mixture of Nocardia pure cultures and activated sludge biomass were determined by a series of batch experiments. The higher levels of Nocardia cells in the Nocardia-activated sludge samples resulted in the higher specific surface area, explaining the higher metal sorption sites by the mixed luquor samples containing greater amounts on Nocardia cells. The effect of Nocardia cells on the metal sorption capacity of activated sludge was evaluated by spiking an activated sludge sample with various amounts of pre culture Nocardia cells. The results of the Langmuir isotherm model fitted to the metal sorption by various mixtures of Nocardia and activated sludge indicated that the mixture containing higher Nocardia levels had higher metal adsorption capacity than the mixture containing lower Nocardia levels. At Nocardia levels above 100mg/g VSS, the metal sorption capacity of activate sludge increased proportionally with the amount of Noeardia cells present in the mixed liquor, indicating that the presence of Nocardia may increase the viosorption capacity of activated sludge.

  • PDF

Growth of $CuGaSe_2$ single crystal thin film for solar cell development and its solar cell application (태양 전지용 $CuGaSe_2$ 단결정 박막 성장과 태양전지로의 응용)

  • Yun, Suk-Jin;Hong, Kwang-Joon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.6
    • /
    • pp.252-259
    • /
    • 2005
  • Single crystal $CuGaSe_2$ layers were grown on thoroughly etched semi-insulating CaAs(100) substrate at $450^{\circ}C$ with hot wall epitaxy (HWE) system by evaporating $CuGaSe_2$ source at $610^{\circ}C$. The crystalline structure of the single crystal thin films was investigated by the photoluminescence (PL) and double crystal X-ray diffraction (DCXD). The carrier density and mobility of single crystal $CuGaSe_2$ thin films measured with Hall effect by Van der Pauw method are $4.87{\times}10^{17}cm^{-3}$ and $129cm^2/V{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the $CuGaSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=1.7998eV-(8.7489{\times}10^{-4}eV/K)T^2/(T+335K)$. The voltage, current density of maxiumun power, fill factor, and conversion, efficiency of $n-CdS/p-CuGaSe_2$, heterojunction solar cells under $80mW/cm^2$ illumination were found to be 0.41 V, $21.8mA/cm^2$, 0.75 and 11.17%, respectively.

RG-II from Panax ginseng C.A. Meyer suppresses asthmatic reaction

  • Jung, In-Duk;Kim, Hye-Young;Park, Jin-Wook;Lee, Chang-Min;Noh, Kyung-Tae;Kang, Hyun-Kyu;Heo, Deok-Rim;Lee, Su-Jung;Son, Kwang-Hee;Park, Hee-Ju;Shin, Sung-Jae;Park, Jong-Hwan;Ryu, Seung-Wook;Park, Yeong-Min
    • BMB Reports
    • /
    • v.45 no.2
    • /
    • pp.79-84
    • /
    • 2012
  • In asthma, T helper 2 (TH2)-type cytokines such as interleukin (IL)-4, IL-5, and IL-13 are produced by activated $CD^{4+}$ T cells. Dendritic cells played an important role in determining the fate of naive T cells into either $T_H1$ or $T_H2$ cells. We determined whether RG-II regulates the $T_H1/T_H2$ immune response by using an ovalbumin-induced murine model of asthma. RG-II reduced IL-4 production but increased interferon-gamma production, and inhibited GATA-3 gene expression. RG-II also inhibited asthmatic reactions including an increase in the number of eosinophils in bronchoalveolar lavage fluid, an increase in inflammatory cell infiltration in lung tissues, airway luminal narrowing, and airway hyperresponsiveness. This study provides evidence that RG-II plays a critical role in ameliorating the pathogenic process of asthmatic inflammation in mice. These findings provide new insights into the immunotherapeutic role of RG-II in terms of its effects in a murine model of asthma.

Inhibitory Effects of β-Cyclodextrin-Helenalin Complexes on H-TERT Gene Expression in the T47D Breast Cancer Cell Line - Results of Real Time Quantitative PCR

  • Ghasemali, Samaneh;Nejati-Koshki, Kazem;Akbarzadeh, Abolfazl;Tafsiri, Elham;Zarghami, Nosratollah;Rahmati-Yamchi, Mohamad;Alizadeh, Effat;Barkhordari, Amin;Tozihi, Majid;Kordi, Shirafkan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6949-6953
    • /
    • 2013
  • Background: Nowadays, the encapsulation of cytotoxic chemotherapeutic agents is attracting interest as a method for drug delivery. We hypothesized that the efficiency of helenalin might be maximized by encapsulation in ${\beta}$-cyclodextrin nanoparticles. Helenalin, with a hydrophobic structure obtained from flowers of Arnica chamissonis and Arnica Montana, has anti-cancer and anti-inflammatory activity but low water solubility and bioavailability. ${\beta}$-Cyclodextrin (${\beta}$-CD) is a cyclic oligosaccharide comprising seven D-glucopyranoside units, linked through 1,4-glycosidic bonds. Materials and Methods: To test our hypothesis, we prepared ${\beta}$-cyclodextrin-helenalin complexes to determine their inhibitory effects on telomerase gene expression by real-time polymerase chain reaction (q-PCR) and cytotoxic effects by colorimetric cell viability (MTT) assay. Results: MTT assay showed that not only ${\beta}$-cyclodextrin has no cytotoxic effect on its own but also it demonstrated that ${\beta}$-cyclodextrin-helenalin complexes inhibited the growth of the T47D breast cancer cell line in a time and dose-dependent manner. Our q-PCR results showed that the expression of telomerase gene was effectively reduced as the concentration of ${\beta}$-cyclodextrin-helenalin complexes increased. Conclusions: ${\beta}$-Cyclodextrin-helenalin complexes exerted cytotoxic effects on T47D cells through down-regulation of telomerase expression and by enhancing Helenalin uptake by cells. Therefore, ${\beta}$-cyclodextrin could be superior carrier for this kind of hydrophobic agent.