Browse > Article

Growth of $CuGaSe_2$ single crystal thin film for solar cell development and its solar cell application  

Yun, Suk-Jin (Department of Chemistry Education, Chosun University)
Hong, Kwang-Joon (Department of Physics, Chosun University)
Abstract
Single crystal $CuGaSe_2$ layers were grown on thoroughly etched semi-insulating CaAs(100) substrate at $450^{\circ}C$ with hot wall epitaxy (HWE) system by evaporating $CuGaSe_2$ source at $610^{\circ}C$. The crystalline structure of the single crystal thin films was investigated by the photoluminescence (PL) and double crystal X-ray diffraction (DCXD). The carrier density and mobility of single crystal $CuGaSe_2$ thin films measured with Hall effect by Van der Pauw method are $4.87{\times}10^{17}cm^{-3}$ and $129cm^2/V{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the $CuGaSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=1.7998eV-(8.7489{\times}10^{-4}eV/K)T^2/(T+335K)$. The voltage, current density of maxiumun power, fill factor, and conversion, efficiency of $n-CdS/p-CuGaSe_2$, heterojunction solar cells under $80mW/cm^2$ illumination were found to be 0.41 V, $21.8mA/cm^2$, 0.75 and 11.17%, respectively.
Keywords
$CuGaSe_2$ single crystal thin film; Hall effect; Energy band gap; $n-Cds/p-CuGaSe_2$ heterojunction solar cells;
Citations & Related Records
연도 인용수 순위
  • Reference
1 N. Nadenau, U. Rau and A. Jasenek, 'Electronic properties of $CuGaSe_2$-based heterojunction Solar cells. Part I. transport analysis', J. Appl. Phys. 87(1) (2000) 584
2 E. Grill, M. Uxxi and A.V. Moskalonov, 'Photoluminescience and photocondutivity measurements on $CuGaSe_2$', J. Phys. C: Solid State Phys. 114 (1978) 2361
3 H. Nakanish, 'Study of the band edge in $CuGaSe_2$ by photovoltaic effect', Jpn. J. Appl. Phys. 19 (1980) 103   DOI
4 V.P. Varshni, 'Far-infrared optical absorption of $Fe^{2+}$ in ZnSe', Physica 34 (1967) 149
5 A. Shankat and R.D. Singh, 'Tetragonal distortion for $A^{I}{\cdot}B^{II}{\cdot}C_2^{III}$ chalcopyrite compounds', J. Phys. Chem. Solid. 39 (1978) 1269   DOI   ScienceOn
6 S.M. Sze, 'Semiconductor devices: physics and technology', Wily. Chap.3 (1998)
7 S. Charbonneau and E. Fortin, 'Sturation photoconductivity in $CuGaSe_2$', Phys. Rew. B 31(4) (1985) 2326   DOI   ScienceOn
8 L. Lerner, '$CuGaSe_2$ and $AgInSe_2$, : Preparation and property of single crystal', J. Phys. Chem. Solids Zn (1966) 1
9 R.B. Nartine, 'Photoluminescience and photocondutivity measurements on $CuGaSe_2$', Phil. Mag. 46 (1955) 831   DOI
10 Elizabeth A. Wood, Crystal Orientation manual, Columbia university press (1963)
11 K.J. Hong and T.S. Jeong, 'The characterization of ZnSe/GaAs epilayers grown by hot wall epitaxy', J. Cryst. Growth 172 (1997) 89   DOI   ScienceOn
12 S. Endo and T. Irizo, 'LED properties of $CuGaSe_2$ single crystal', J. Phys. Chem. Solids 37 (1971) 201   DOI   ScienceOn
13 J. E. Kim, H. Y. Park, S. G. Lee and J. Y. Lee, 'Photoacoustic spectra of $CuGaSe_2$', New Physics 28(4) (1998) 515
14 L. Kronik, L. Bursten and M. Leiboritch, 'Band diagram of the polycrystalline CdS/CuGa(In)Se heterojunction', Appl. Phys. Lett. 67(10) (1995) 1405   DOI   ScienceOn
15 B.D. Cullity, Elements of X-ray Diffractions, (Addson-Welsey, 1985) Chap.11
16 S. Charbonneau and E. Fortin, 'Sturation photoconductivity in $CuGaSe_2$', Phys. Rew. B 31(4) (1985) 2326   DOI   ScienceOn
17 H. Fujita, 'Electron radition damage in cadium-selenide crystal at liquid-helium temperrature', J. Phys. Soc., Jpn. 20 (1965) 109
18 W. Gebicki, J. Filipowicz and R. Bacewicz, 'Raman scattering in novel $CuGaSe_2$ crystals', J. Phys. Condens. Matter 8 (1996) 8695   DOI   ScienceOn
19 H. Nakanish, 'Study of the band edge in $CuGaSe_2$ by photovoltaic effect', Jpn. J. Appl. Phys. 19 (1980) 103   DOI