• Title/Summary/Keyword: CD10

Search Result 5,219, Processing Time 0.032 seconds

Overexpression of Galectin-3 in Macrophages of C57BL/6 mice with Experimental Autoimmune Encephalomyelitis (자가면역성 뇌척수염을 유도한 C57BL/6 마우스 큰포식세포에서의 Galectin-3의 과발현)

  • Kim, Dae Seung;Hwang, Insun;Park, Suk-jae;Ahn, Ginnae;Park, Sang-Joon;Park, Hyun Jeong;Joo, Hong-Gu;Jee, Youngheun
    • Korean Journal of Veterinary Research
    • /
    • v.51 no.2
    • /
    • pp.139-149
    • /
    • 2011
  • Experimental autoimmune encephalomyelitis (EAE) is an inflammatory disease in the murine central nervous system (CNS) and has long been used as an animal model for human multiple sclerosis. Development of EAE requires coordinated expression of a number of genes that are involved in the activation and effector functions of inflammatory cells. Galectin-3 (Gal-3) is a member of the betagalactoside- binding lectin family and plays an important role in inflammatory responses through its functions on cell activation, cell migration or inhibition of apoptosis. We investigated the functional role of Gal-3 in EAE mice following immunization with myelin oligodendrocyte glycoprotein $(MOG)_{35-55}$ peptide. During the peak stage of EAE, the localization of Gal-3 in inflammatory cells markedly increased in subarachnoid membranes and perivascular regions of CNS. In contrast, Gal-3 was weakly detected in cerebrum and spinal of the recovery stage of EAE. Consistent with this finding, western blot analysis revealed that Gal-3 expression was significantly increased at the peak stage while it was slightly decreased at the recovery stage in the CNS. In addition, the population of $CD11b^{+}$ macrophage expressing Gal- 3 in spleen of EAE mice was markedly increased compared with control mice. In fact, most of activated macrophages isolated from spleen of EAE mice expressed Gal-3. Taken together, our results demonstrate that the over-expression of Gal-3 in activated macrophages may play a key role in promoting inflammatory cells in the CNS during EAE.

Characteristics of Heavy Metal Biosorption by Enterobacter intermedious KH410 (Enterobacter intermedious KH410의 중금속 흡착 특성)

  • 김영희;정영기;김광현;김병우;정경태;김병석;박지원;이동준;신현철
    • Journal of Life Science
    • /
    • v.13 no.4
    • /
    • pp.421-427
    • /
    • 2003
  • A natural habit at bacterium, Enterobacter intermedious KH410 was isolated from freshwater plant root and identified. Adsorption of heavy metals such as lead, cadmium, and copper by this strain was examined. The minimal inhibitory concentrations(MIC) for each metal were 1.78 mM for lead, 0.17 mM for cadmium and 1.39 mM for lopper, respectively. Maximum production of dried cell was 2.56 g/$\ell$ in LB medium containing 0.5% NaCl, 1% yeast extract and 1% of lactose. Optimal conditions for adsorption were 0.6 dry g-biomass, at pH 4.0 and the temperature of $20^{\circ}C$. Adsorption equilibrium reached maximum after 30 min in 400 mg/$\ell$ metal solution. The adsorption capacity (K) of copper was 1.5 times higher than that of cadmium and lead was 1.1 times higher than that of cadmium. from the results obtained in this study, Freundlich adsorption model was applicable for all metals. Adsorption strength (1/n) of heavy metal ions were in the order of cadmium>copper>lead. The adsorption of dried cell for lead, cadmium, and copper was 56.2, 58.0, 55.8 mg/g-biomass, respectively. Pretreatment to increase ion strength was the most effective with 0.1 M NaOH whereas slight difference was found both KOH and $CaCl_2$ upon same concentration. Effective desorption was induced by 0.1 M EDTA for lead and 0.1 M $HNO_2$ for cadmium and copper.

Environmental Geochemistry and Heavy Matel Contamination of Ground and Surface Water, Soil and Sediment at the Kongjujuil Mine Creek, Korea (공주제일광산 수계에 분포하는 지하수, 지표수, 토양 및 퇴적물의 환경지구화학적 특성과 중금속 오염)

  • 이찬희
    • Economic and Environmental Geology
    • /
    • v.32 no.6
    • /
    • pp.611-631
    • /
    • 1999
  • Enviromental geochemisty and heary metal contamination at the Kongjueil mine creek were underaken on the basis of physicohemical properties and mineralogy for various kinds of water (surface, mine and ground water),soil, precipitate and sediment collected of April and December in 1998. Hydrgeochemical composition of the water samples are characterized by relatively significant enricant of Ca+Na, alkiali ions $NO_3$ and Cl inground and surfore water, wheras the mine waters are relatively eneripheral water of the mining creek have the characteristics of the (Ca+Mg)-$(HCO_3+SO_4)$type. The pH of the mine water is high acidity (3.24)and high EC (613$\mu$S/cm)compared with those of surface and ground water. The range of $\delta$D and $\delta^{18}O$ values (relative to SMOW) in the waters are shpwn in -50.2 to -61.6% and -7.0 to -8.6$\textperthousand$(d value=5.8 to 8.7). Using computer program, saturation index of albite, calcite, dolomite in mine water are nearly saturated. The gibbiste, kaolinite and smectite are superaturated in the surface and ground water, respectively. Calculated water-mineral reaction and stabilities suggest that weathing of silicate minerals may be stable kaolinite owing to the continuous water-rock reaction. Geochemical modeling showed that mostly toxic heavy metals may exist larfely in the from of metal-sulfate $(MSO_4\;^2)$and free metal $(M^{2+})$ in nmine water. These metals in the ground and surface water could be formed of $CO_3$ and OH complex ions. The average enrichment indices of water samples are 2.72 of the groundwater, 2.26 of the surface water and 14.15 of the acid mine water, normalizing by surface water composition at the non-mining creek, repectively. Characteristics of some major, minor and rate earth elements (Al/Na, K/Na, V/Ni, Cr/V, Ni/Co, La/Ce, Th/Yb, $La_N/Yb_N$, Co/Th, La/Sc and Sc/Th) in soil and sediment are revealed a narrow range and homogeneous compositions may be explained by acidic to intermediate igneous rocks. And these suggested that sediment source of host granitic gneiss colud be due to rocks of high grade metamorphism originated by sedimentary rocks. Maximum concentrations of environmentally toxic elements in sediment and soil are Fe=53.80 wt.% As=660, Cd=4, Cr=175, Cu=158, Mn=1010, Pb=2933, Sb=4 and Zn=3740 ppm, and extremely high concentrations are found are found in the subsurface soil near the ore dump and precipitates. Normalizing by composition of host granitic gneiss, the average enerichment indices are 3.72 of the sediments, 3.48 of the soils, 10.40 of the precipitates of acid mine drainage and 6.25 of the soils near the main adit. The level of enerichment was very severe in mining drainage sediments, while it was not so great in the soils. mineral composition of soil and sediment near the mining area were partly variable being composed of quartz, mica, feldspar, chlorite, vermiculite, bethierin and clay minerals. reddish variable being composed of quartz, mica, feldspar, chlorite, vermiculite, bethierin and clay minerals. Reddish brown precipitation mineral in the acid mine drainage identifies by schwertmanite. From the separated mineralgy, soil and sediment are composed of some pyrite, arsenopyite, chalcopyrite, sphalerite, galena, malachite, goethite and various kinds of hydroxied minerals.

  • PDF

Gender-independent efficacy of mesenchymal stem cell therapy in sex hormone-deficient bone loss via immunosuppression and resident stem cell recovery

  • Sui, Bing-Dong;Chen, Ji;Zhang, Xin-Yi;He, Tao;Zhao, Pan;Zheng, Chen-Xi;Li, Meng;Hu, Cheng-Hu;Jin, Yan
    • Experimental and Molecular Medicine
    • /
    • v.50 no.12
    • /
    • pp.12.1-12.14
    • /
    • 2018
  • Osteoporosis develops with high prevalence in both postmenopausal women and hypogonadal men. Osteoporosis results in significant morbidity, but no cure has been established. Mesenchymal stem cells (MSCs) critically contribute to bone homeostasis and possess potent immunomodulatory/anti-inflammatory capability. Here, we investigated the therapeutic efficacy of using an infusion of MSCs to treat sex hormone-deficient bone loss and its underlying mechanisms. In particular, we compared the impacts of MSC cytotherapy in the two genders with the aim of examining potential gender differences. Using the gonadectomy (GNX) model, we confirmed that the osteoporotic phenotypes were substantially consistent between female and male mice. Importantly, systemic MSC transplantation (MSCT) not only rescued trabecular bone loss in GNX mice but also restored cortical bone mass and bone quality. Unexpectedly, no differences were detected between the genders. Furthermore, MSCT demonstrated an equal efficiency in rectifying the bone remodeling balance in both genders of GNX animals, as proven by the comparable recovery of bone formation and parallel normalization of bone resorption. Mechanistically, using green fluorescent protein (GFP)-based cell-tracing, we demonstrated rapid engraftment but poor inhabitation of donor MSCs in the GNX recipient bone marrow of each gender. Alternatively, MSCT uniformly reduced the $CD3^+T$-cell population and suppressed the serum levels of inflammatory cytokines in reversing female and male GNX osteoporosis, which was attributed to the ability of the MSC to induce T-cell apoptosis. Immunosuppression in the microenvironment eventually led to functional recovery of endogenous MSCs, which resulted in restored osteogenesis and normalized behavior to modulate osteoclastogenesis. Collectively, these data revealed recipient sexually monomorphic responses to MSC therapy in gonadal steroid deficiency-induced osteoporosis via immunosuppression/anti-inflammation and resident stem cell recovery.

MTHFR 3'-untranslated region polymorphisms contribute to recurrent pregnancy loss risk and alterations in peripheral natural killer cell proportions

  • Kim, Eun Sun;Kim, Jung Oh;An, Hui Jeong;Sakong, Jung Hyun;Lee, Hyun Ah;Kim, Ji Hyang;Ahn, Eun Hee;Kim, Young Ran;Lee, Woo Sik;Kim, Nam Keun
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.44 no.3
    • /
    • pp.152-158
    • /
    • 2017
  • Objective: To identify the associations between polymorphisms of the 3'-untranslated region (UTR) of methylenetetrahydrofolate reductase (MTHFR) gene, which codes for an important regulatory enzyme primarily involved in folate metabolism, and idiopathic recurrent pregnancy loss (RPL) in Korean women. Methods: The study population comprised 369 RPL patients and 228 controls. MTHFR 2572C > A, 4869C > G, 5488C > T, and 6685T > C 3'-UTR polymorphisms were genotyped by polymerase chain reaction-restriction fragment length polymorphism analysis or by TaqMan allelic discrimination assays. Natural killer cell proportions were determined by flow cytometry. Results: The MTHFR 2572-5488-6685 (A-C-T) haplotype had an adjusted odds ratio of 0.420 (95% confidence interval, 0.178-0.994; p= 0.048) for RPL. Analysis of variance revealed that MTHFR 4869C > G was associated with altered $CD56^+$ natural killer cell percentages (CC, $17.91%{\pm}8.04%$; CG, $12.67%{\pm}4.64%$; p= 0.024) and folate levels (CC, $12.01{\pm}7.18mg/mL$; CG, $22.15{\pm}26.25mg/mL$; p= 0.006). Conclusion: Variants in the 3'-UTR of MTHFR are potential biomarkers for RPL. However, these results should be validated in additional studies of ethnically diverse groups of patients.

Evaluating Heavy Metal Stabilization Efficiency of Chemical Amendment in Agricultural Field: Field Experiment (안정화제 처리에 따른 중금속 오염 농경지 복원의 효율성 평가: 현장실증시험)

  • Oh, Se-Jin;Kim, Sung-Chul;Yoon, Hyun-Soo;Kim, Ha-Na;Kim, Tae-Hwan;Yeon, Kyu-Hun;Lee, Jin-Soo;Hong, Sung-Jo;Yang, Jae-E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1052-1062
    • /
    • 2011
  • Residual of heavy metals originated from abandoned metal mines in agricultural field can cause adverse effect on ecosystem and eventually on human health. For this reason, remediation of heavy metal contaminated agriculture field is a critical issue. In this study, five different amendments, agriculture lime, dolomite, steel slag, zeolite, and compost, were evaluated for stabilization efficiency of heavy metals in agricultural field. Applied mixing ratio of amendments was varied (2% or 6%) depending on properties of amendments. Result showed that soil pH was increased compared to control (6.1-6.7) after mixing with amendments and ordered as dolomite (7.2~8.3) > steel slag (6.7~8.1) > agriculture lime (6.6~7.4) > zeolite (6.2~6.9) > compost (6.1~7.1). Among other amendments, agriculture lime, steel slag, and dolomite showed the highest stabilization efficiency of heavy metals in soil. For Cd, stabilization efficiency was 49~72%, 51~83%, and 0~36% for agriculture lime, steel slag, and dolomite respectively. In case of Pb, 43~64, 37~73%, and 51~73% of stabilization efficiency was observed for agriculture lime, steel slag, and dolomite respectively. However, minimal effect of heavy metal stabilization was observed for zeolite and compost. Based on result of this study, amendments that can increase the soil pH were the most efficient to stabilize heavy metal residuals and can be adapted for remediation purpose in agricultural field.

miR-458b-5p regulates ovarian granulosa cells proliferation through Wnt/β-catenin signaling pathway by targeting catenin beta-1

  • Wang, Wenwen;Teng, Jun;Han, Xu;Zhang, Shen;Zhang, Qin;Tang, Hui
    • Animal Bioscience
    • /
    • v.34 no.6
    • /
    • pp.957-966
    • /
    • 2021
  • Objective: Ovarian follicular development, which dependent on the proliferation and differentiation of granulosa cells (GCs), is a complex biological process in which miRNA plays an important role. Our previous study showed that miR-458b-5p is associated with ovarian follicular development in chicken. The detailed function and molecular mechanism of miR-458b-5p in GCs is unclear. Methods: The luciferase reporter assay was used to verify the targeting relationship between miR-458b-5p and catenin beta-1 (CTNNB1), which is an important transcriptional regulatory factor of the Wnt/β-catenin pathway. The cell counting kit-8 (CCK-8) assay, flow cytometry with propidium iodide (PI) and annexin V-fluorescein isothiocyanate (FITC) labeling were applied to explore the effect of miR-458b-5p on proliferation, cell cycle and apoptosis of chicken GCs. Quantitative real-time polymerase chain reaction and Western blot were used to detect the mRNA and protein expression levels. Results: We demonstrated that the expression of miR-458b-5p and CTNNB1 showed the opposite relationship in GCs and theca cells of hierarchical follicles. The luciferase reporter assay confirmed that CTNNB1 is the direct target of miR-458b-5p. Using CCK-8 assay and flow cytometry with PI and Annexin V-FITC labeling, we observed that transfection with the miR-458b-5p mimics significantly reduced proliferation and has no effects on apoptosis of chicken GCs. In addition, miR-458b-5p decreased the mRNA and protein expression of CD44 molecule and matrix metallopeptidase 7, which are the downstream effectors of CTNNB1 in Wnt/β-Catenin pathway and play functional roles in cell proliferation. Conclusion: Taken together, the data indicate that miR-458b-5p regulates ovarian GCs proliferation through Wnt/β-catenin signaling pathway by targeting CTNNB1, suggesting that miR-458b-5p and its target gene CTNNB1 may potentially play a role in chicken ovarian follicular development.

Ginsenoside Rg1 supplementation clears senescence-associated β-galactosidase in exercising human skeletal muscle

  • Wu, Jinfu;Saovieng, Suchada;Cheng, I-Shiung;Liu, Tiemin;Hong, Shangyu;Lin, Chang-Yu;Su, I-Chen;Huang, Chih-Yang;Kuo, Chia-Hua
    • Journal of Ginseng Research
    • /
    • v.43 no.4
    • /
    • pp.580-588
    • /
    • 2019
  • Background: Ginsenoside Rg1 has been shown to clear senescence-associated beta-galactosidase (SA-${\beta}$-gal) in cultured cells. It remains unknown whether Rg1 can influence SA-${\beta}$-gal in exercising human skeletal muscle. Methods: To examine SA-${\beta}$-gal change, 12 young men (age $21{\pm}0.2years$) were enrolled in a randomized double-blind placebo controlled crossover study, under two occasions: placebo (PLA) and Rg1 (5 mg) supplementations 1 h prior to a high-intensity cycling (70% $VO_{2max}$). Muscle samples were collected by multiple biopsies before and after cycling exercise (0 h and 3 h). To avoid potential effect of muscle biopsy on performance assessment, cycling time to exhaustion test (80% $VO_{2max}$) was conducted on another 12 participants (age $23{\pm}0.5years$) with the same experimental design. Results: No changes of SA-${\beta}$-gal were observed after cycling in the PLA trial. On the contrary, nine of the 12 participants showed complete elimination of SA-${\beta}$-gal in exercised muscle after cycling in the Rg1 trial (p < 0.05). Increases in apoptotic DNA fragmentation (PLA: +87% vs. Rg1: +133%, p < 0.05) and $CD68^+$ (PLA:+78% vs. Rg1:+121%, p = 0.17) occurred immediately after cycling in both trials. During the 3-h recovery, reverses in apoptotic nuclei content (PLA:+5% vs. Rg1 -32%, p < 0.01) and increases in inducible nitrate oxide synthase and interleukin 6 mRNA levels of exercised muscle were observed only in the Rg1 trial (p < 0.01). Conclusion: Rg1 supplementation effectively eliminates senescent cells in exercising human skeletal muscle and improves high-intensity endurance performance.

3D Fusion Imaging based on Spectral Computed Tomography Using K-edge Images (K-각 영상을 이용한 스펙트럼 전산화단층촬영 기반 3차원 융합진단영상화에 관한 연구)

  • Kim, Burnyoung;Lee, Seungwan;Yim, Dobin
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.4
    • /
    • pp.523-530
    • /
    • 2019
  • The purpose of this study was to obtain the K-edge images using a spectral CT system based on a photon-counting detector and implement the 3D fusion imaging using the conventional and spectral CT images. Also, we evaluated the clinical feasibility of the 3D fusion images though the quantitative analysis of image quality. A spectral CT system based on a CdTe photon-counting detector was used to obtain K-edge images. A pork phantom was manufactured with the six tubes including diluted iodine and gadolinium solutions. The K-edge images were obtained by the low-energy thresholds of 35 and 52 keV for iodine and gadolinium imaging with the X-ray spectrum, which was generated at a tube voltage of 100 kVp with a tube current of $500{\mu}A$. We implemented 3D fusion imaging by combining the iodine and gadolinium K-edge images with the conventional CT images. The results showed that the CNRs of the 3D fusion images were 6.76-14.9 times higher than those of the conventional CT images. Also, the 3D fusion images was able to provide the maps of target materials. Therefore, the technique proposed in this study can improve the quality of CT images and the diagnostic efficiency through the additional information of target materials.

Interferon-γ-mediated secretion of tryptophanyl-tRNA synthetases has a role in protection of human umbilical cord blood-derived mesenchymal stem cells against experimental colitis

  • Kang, Insung;Lee, Byung-Chul;Lee, Jin Young;Kim, Jae-Jun;Lee, Seung-Eun;Shin, Nari;Choi, Soon Won;Kang, Kyung-Sun
    • BMB Reports
    • /
    • v.52 no.5
    • /
    • pp.318-323
    • /
    • 2019
  • Mesenchymal stem cells (MSCs) are multipotent adult stem cells that present immunosuppressive effects in experimental and clinical trials targeting various rare diseases including inflammatory bowel disease (IBD). In addition, recent studies have reported tryptophanyl-tRNA synthetase (WRS) possesses uncanonical roles such as angiostatic and anti-inflammatory effects. However, little is known about the function of WRS in MSC-based therapy. In this study, we investigated if a novel factor, WRS, secreted from MSCs has a role in amelioration of IBD symptoms and determined a specific mechanism underlying MSC therapy. Experimental colitis was induced by administration of 3% DSS solution to 8-week-old mice and human umbilical cord blood-derived MSCs (hUCB-MSCs) were injected intraperitoneally. Secretion of WRS from hUCB-MSCs and direct effect of WRS on isolated $CD4^+$ T cells was determined via in vitro experiments and hUCB-MSCs showed significant therapeutic rescue against experimental colitis. Importantly, WRS level in serum of colitis induced mice decreased and recovered by administration of MSCs. Through in vitro examination, WRS expression of hUCB-MSCs increased when cells were treated with interferon-${\gamma}$ ($IFN-{\gamma}$). WRS was evaluated and revealed to have a role in inhibiting activated T cells by inducing apoptosis. In summary, $IFN-{\gamma}$-mediated secretion of WRS from MSCs has a role in suppressive effect on excessive inflammation and disease progression of IBD and brings new highlights in the immunomodulatory potency of hUCB-MSCs.