• Title/Summary/Keyword: CD Toxicity

Search Result 286, Processing Time 0.026 seconds

Corrosion Evaluation for Advanced Fuel Cycle Facilities (선진 핵연료주기 시설(AFC)의 부식건전성 조사, 분석)

  • Hwang, Seong Sik
    • Corrosion Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.213-217
    • /
    • 2012
  • The amount of spent fuel from nuclear power plants has been increasing. An effective management plan of the spent fuel becomes a critical issue, because the storage capacity of each plant will reach its storage limit in a few years. The volume of high toxic spent fuel can be reduced through a fuel processing. Advanced Fuel Cycle (AFC) system is considered to be one of the options to reduce the toxicity and volume of the spent fuel. It is necessary to set up a test facility to demonstrate the feasibility of the process at the engineering scale. The objective of the work is a development of the safety evaluation technology for the AFC system. The evaluation technology of the AFC structural integrity and processes were surveyed and reviewed. Key evaluation parameters for the main processes such as electrolytic reduction, electrorefining, and electrowinning were obtained. The survey results may be used for the establishment of the AFC regulatory licensing procedure. The establishment of the licensing criteria minimizes the trials and errors of the AFC facility design. Issues taken from the survey on the regulatory procedure and design safety features for the AFC facility provide a chance to resolve potential issues in advance.

A Modeling Approach: Effects of Wetland Plants on the Fate of Metal Species in the Sediments (퇴적물에서 금속 이온 거동에 미치는 습지 식물의 영향에 관한 모델 연구)

  • Choi, Jung Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.5
    • /
    • pp.603-610
    • /
    • 2008
  • A mathematical model was developed to understand how the presence of plants affects vertical profiles of electron acceptors, their reduced species, and trace metals in the wetland sediments. The model accounted for biodegradation of organic matter utilizing sequential electron acceptors and subsequent chemical reactions using stoichiometric relationship. These biogeochemical reactions were affected by the combined effects of oxygen release and evapotranspiration driven by wetland plants. The measured data showed that $SO_4{^{2-}}$ concentrations increased at the beginning of the growing season and then gradually decreased. Based on the measured data, it was hypothesized that the limitation of the solid phase sulfide in direct contact with the roots may result in the gradual decrease of $SO_4{^{2-}}$ concentrations. With the dynamic formulation for the limitation of the solid phase sulfide, model simulated time variable sulfate profiles using published model parameters. Oxygen release from roots produced divalent metal species (i.e. $Cd^{2+}$) as well as oxidized sulfur species (i.e. $SO_4{^{2-}}$) in the sediment pore water. Evapotranspiration-induced advection increased flux of divalent metal species from the overlying water column into the rhizosphere. The increased divalent metal species were converted to the metal sulfide with sufficient FeS around the rhizosphere, which contributed to the decrease of bioavailability and toxicity of divalent metal activity in the pore water. Since the divalent metal activity is a good predictor of the metal bioavailability, this model with a proper simulation of solid phase sulfide plays an essential role to predict the dynamics of trace metals in the wetland sediments.

The Heavy Metal Tolerant Soil Bacterium Achromobacter sp. AO22 Contains a Unique Copper Homeostasis Locus and Two mer Operons

  • Ng, Shee Ping;Palombo, Enzo A.;Bhave, Mrinal
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.6
    • /
    • pp.742-753
    • /
    • 2012
  • Copper-containing compounds are introduced into the environment through agricultural chemicals, mining, and metal industries and cause severe detrimental effects on ecosystems. Certain microorganisms exposed to these stressors exhibit molecular mechanisms to maintain intracellular copper homeostasis and avoid toxicity. We have previously reported that the soil bacterial isolate Achromobacter sp. AO22 is multi-heavy metal tolerant and exhibits a mer operon associated with a Tn21 type transposon. The present study reports that AO22 also hosts a unique cop locus encoding copper homeostasis determinants. The putative cop genes were amplified from the strain AO22 using degenerate primers based on reported cop and pco sequences, and a constructed 10,552 base pair contig (GenBank Accession No. GU929214). BLAST analyses of the sequence revealed a unique cop locus of 10 complete open reading frames, designated copSRABGOFCDK, with unusual separation of copCD from copAB. The promoter areas exhibit two putative cop boxes, and copRS appear to be transcribed divergently from other genes. The putative protein CopA may be a copper oxidase involved in export to the periplasm, CopB is likely extracytoplasmic, CopC may be periplasmic, CopD is cytoplasmic/inner membrane, CopF is a P-type ATPase, and CopG, CopO, and CopK are likely copper chaperones. CopA, B, C, and D exhibit several potential copper ligands and CopS and CopR exhibit features of two-component regulatory systems. Sequences flanking indicate the AO22 cop locus may be present within a genomic island. Achromobacter sp. strain AO22 is thus an ideal candidate for understanding copper homeostasis mechanisms and exploiting them for copper biosensor or biosorption systems.

Effect of Endocrine Disruptors on the Oocyte Maturation and Ovulation in Amphibians, Rana dybowskii

  • Choi, Mee-Jeong;Kim, Seung-Chang;Kim, An-Na;Kwon, Hyuk-Bang;Ahn, Ryun-Sup
    • Animal cells and systems
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 2007
  • Recently, we have shown that some endocrine disruptors, heavy metals, organotins and azoles suppressed steroidogenic enzymes such as P450 side-chain cleavage enzyme (P450scc) and aromatase in bullfrog ovarian follicles. In the present study, by using an amphibian ovarian follicle culture system, we examined the effects of these endocrine disruptors on maturation and ovulation of oocytes from Rana dybowskii in vitro. Ovarian fragments or isolated follicles were cultured for 24 h in a medium containing frog pituitary homogenate (FPH) or progesterone ($P_{4}$) with or without endocrine disruptors, and oocyte maturation (germinal vesicle breakdown, GVBD) and ovulation were examined. Among the organotins, tributyltin (TBT) strongly inhibited both FPH-and $P_{4}-induced$ oocyte maturation ($ED_{50}$:0.6 and 0.7 ${\mu}M$, respectively); however, tetrabutyltin (TTBT) and dibutyltin (DBT) showed only partial suppression, while monobutyltin (MBT) showed no inhibitory effect. All of the organotins suppressed $P_{4}-induced$ oocyte ovulation very effectively at a low concentration, and TBT and DBT exerted an inhibitory effect on FPH-induced ovulation. Among the heavy metals, mercury (Hg), cadmium (Cd) and cobalt (Co) were very effective in inhibiting FPH-induced oocyte maturation and ovulation, while lead (Pb), arsenite (As) and zinc (Zn) were less effective. However, all of the heavy metals suppressed FPH-induced oocyte ovulation at a high dose ($100{\mu}M$). Among the azoles, itraconazole (ICZ), ketoconazole (KCZ) and clotrimazole (CTZ) effectively inhibited FPH-induced oocyte maturation and ovulation, while econazole (ECZ), miconazole (MCZ) and fluconazole (FCZ) were considerably less effective. These results demonstrated that the abovementioned endocrine disruptors exhibited differential effects on oocyte maturation and ovulation in amphibian follicles and that the frog ovarian culture system could be used as an effective experimental tool to screen and evaluate the toxicity of various endocrine disruptors in vitro.

The Effect of Salicylic Acid on $Cd^{2+}$-induced Physiological Toxicity in Commelina communis L. ($Cd^{2+}$에 의한 닭의장풀의 생리적 독성에 salicyclic acid가 미치는 영향)

  • 이준상
    • Korean Journal of Environmental Biology
    • /
    • v.20 no.1
    • /
    • pp.73-77
    • /
    • 2002
  • The effect of salicylic acid (SA) on C $d^{2+}$ - induced physiological toxicity in Commelina communis was investigated. 3- weeks old Commelina communis was transferred to and grown in Hoagland solution in the presence or absence of 100 $\mu$M C $d^{2+}$ and SA for 3 weeks. In the treatment of C $d^{2+}$ + SA, the length of stem was increased to 0.7 cm for 3 weeks (C $d^{2+}$, 2.1cm; control, 7.2 cm). C $d^{2+}$ + SA reduced total chlorophyll content up to 86%, and changed chlorophyll a/b ratio below 1.6. C $d^{2+}$ + SA also reduced about 40-78% of water potential, but C $d^{2+}$ increased 16-39% from 1 week to 3 weeks. C $d^{2+}$ + SA also inhibited 27% of Fv/Fm, but in case of C $d^{2+}$, Fv/Fm was not changed. The treatment of C $d^{2+}$ + SA showed about 37-58% inhibition of photosynthetic activity when measured at various light intensity (500-1000 $\mu$mol $m^{-2}$ $s^{-1}$ ). In the case of C $d^{2+}$ treatment, photosynthetic activity was inhibited to 12-15%. Similar effect was found in terms of stomatal conductance. Therefore, it could be concluded that the treatment of C $d^{2+}$ + SA into plant decrease or block various physiological activities and lend to die by double effects of both chemicals.cts of both chemicals..

The Effects of Isopropyl 2-(1,3-dithioetane-2-ylidene)-2-[N-(4-methyl-thiazol-2-yl)carbamoyl]acetate (YH439) on Potentiated Carbon Tetrachloride Hepatotoxicity (상승적 화학적 간독성에 미치는 YH439의 영향)

  • Kim, Sang-Geon;Cho, Joo-Youn
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.3
    • /
    • pp.407-416
    • /
    • 1996
  • The reactive intermediates formed during the metabolism of therapeutic agents, toxicants and carcinogens by cytochromes P450 are frequently capable of covalently binding to tissue macromolecules and causing tissue damage. It has been shown that YH439, a congener of malotilate, is effective in suppressing hepatic P450 2E1 expression. The present study was designed to further establish the mechanistic basis of YH439 protection against toxicant by assessing its effects against chemical-mediated potentiated hepatotoxicity. Retinoyl palmitate (Vit-A) pretreatment of rats for 7 days substantially enhanced carbon tetrachloride hepatotoxicity, as supported by an ${\sim}5-fold$ increase in serum alanine aminotransferase (ALT) activity, as compared to $CCl_4$ treatment alone. The elevation of ALT activity due to Vit-A was completely blocked by the treatment of $GdCl_3$ a selective inhibitor of Kupffer cell activity. Concomitant pretreatment of rats with both YH439 and Vit-A resulted in a 94% decrease in Vit-A-potentiated $CCl_4$ hepatotoxicity. YH439 was also effective against propyl sulfide-potentiated $CCl_4-induced$ hepatotoxicity. Whereas propyl sulfide (50 mg/kg, 7d) enhanced $CCl_4-induced$ hepatotoxicity by >5-fold, relative to $CCl_4$ treatment alone, concomitant treatment of animals with both propyl sulfide and YH439 at the doses of 100 and 200 mg/kg prevented propyl sulfide-potentiated $CCl_4$ hepatotoxicity by 35% and 90%, respectively. Allyl sulfide, a suppressant of hepatic P450 2E1 expression, completely blocked the propyl sulfide-enhanced hepatotoxicity, indicating that propyl sulfide potentiation of $CCl_4$ hepatotoxicity was highly associated with the expression of P450 2E1 and that YH439 blocked the propyl sulfide-enhanced hepatotoxicity through modulation of P450 2E1 levels. Propyl sulfide- and $CCl_4-induced$ stimulation of lipid peroxidation was also suppressed by YH439 in a dose-related manner, as supported by decreases in malonedialdehyde production. The role of P450 2E1 induction in the potentiation of $CCl_4$ toxicity and the effects of YH439 were further evaluated using pyridine as a P450 2E1 inducer. Pyridine pretreatment substantially enhanced the $CCl_4$ hepatotoicity by 23-fold, relative to $CCl_4$ alone. YH439, however, failed to reduce the pyridine-potentiated toxicity, suggesting that the other form(s) of cytochroms P450 inducible by pyridine, but not suppressible by YH439 treatment, may play a role in potentiating $CCl_4-induced$ hepatotoxicity. YH439 was capable of blocking cadmium chloride-induced liver toxicity in mice. These results demonstrated that YH439 efficiently blocks Vit-A-enhanced hepatotoxiciy through Kupffer cell inactivation and that the suppression of P450 2E1 expression by YH439 is highly associated with blocking of propyl sulfide-mediated hepatotoxicity.

  • PDF

Efficiency of Poultry Manure Biochar for Stabilization of Metals in Contaminated Soil (계분 바이오차를 이용한 토양 중금속 안정화 효율 평가)

  • Lim, Jung Eun;Lee, Sang Soo;Ok, Yong Sik
    • Journal of Applied Biological Chemistry
    • /
    • v.58 no.1
    • /
    • pp.39-50
    • /
    • 2015
  • Stabilization of heavy metals such as Pb, Cd, Zn, and Cu was evaluated in contaminated soil treated with poultry manure (PM) as well as its biochars pyrolyzed at $300^{\circ}C$ (PBC300) and $700^{\circ}C$ (PBC700) at the application rates of 2.5, 5.0, and 10.0 wt% along with the control, prior to 21-days incubation. After incubation, soil pH was increased from 6.94 (control) to 7.51, 7.24, and 7.88 in soils treated with PM 10 wt%, PBC300 10 wt%, and PBC700 10 wt% treatments, respectively, mainly due to alkalinity of treatments. In the soil treated with PM, the concentrations of the toxicity characteristic leaching procedure (TCLP)-extractable Pb, Cd, Zn, and Cu were increased by up to 408, 77, 24, and 955%, respectively, compared to the control. These increases may possibly be associated with an increased dissolved organic carbon concentration by the PM addition. However, in the soil treated with PBC700, TCLP-extractable Pb, Cd, Zn, and Cu concentrations were reduced by up to 23, 38, 52, and 36%, respectively, compared to the control. Thermodynamic modelling using the visual MINTEQ was done to predict the precipitations of $Pb(OH)_2$, $Cu(OH)_2$ and P-containing minerals, such as chloropyromorphite [$Pb_5(PO_4)_3Cl$] and hydroxypyromorphite [$Pb_5(PO_4)_3OH$], in the PBC700 10 wt% treated soil. The SEM-elemental dot mapping analysis further confirmed the presence of Pb-phosphate species via dot mapping of PBC700 treated soil. These results indicate that the reduction of Pb concentration in the PBC700 treated soil is related to the formations of chloropyromorphite and hydroxypyromorphite which have very low solubility.

The Effect of Soil Acidification on the Distribution of Nutrients and Heavy metals in Forest Ecosystem near Ulsan Industrial Estate (울산(蔚山) 공단주변(工團周邊) 산림토양(山林土壤)의 산성화(酸性化)가 산림생태계(山林生態系)의 양료(養料)와 중금속(重金屬) 분포(分布)에 미치는 영향(影響))

  • Lee, Seung Woo;Lee, Soo Wook
    • Journal of Korean Society of Forest Science
    • /
    • v.84 no.3
    • /
    • pp.286-298
    • /
    • 1995
  • This study was carried out to investigate the effect of forest soil acidification on the distribution of exchangeable cations($Ca^{2+}$, $Mg^{2+}$, $Al^{3+}$) and heavy metals(Cu, Zn, Mn, Pb, Cd) in soil, and to understand the relation of the soil chemical properties and the distribution of nutrients and hear metals in fine root and foliage. The results through survey on the long - term change of soil pH and the contents of nutrient and heavy metal in soil, fine root and foliage by 2 sites near Ulsan - Onsan industrial estate and 2 sites in limited development district are summarized as follows : 1. The average forest soil pH(A horizon) in Ulsan had been proceeded down to 3.73 in deciduous forest and 3.86 in coniferous forest in 1994 from 4.45 and 4.78 in 1987, respectively, which indicated serious soil acidification. As comparing soil pH among sites, Dongcheon coniferous forest(pH 4.57) in limited development district showed the highest values and Dangwol deciduous forest(pH 3.19) near Onsan industrial estate showed the lowest values in 1994. 2. Contents of exchangeable calcium in forest soils of limited development district where showed much higher soil pH than industrial estate were 3.5 times more in deciduous forest soil and 11 times more in coniferous forest soil than in industrial estate, and contents of exchangeable magnesium were also 4.5 and 5 times more in limited development district than in industrial estate, respectively. However contents of exchangeable aluminium which had been supposed more in forest soil of industrial estate were more in limited development district. 3. Contents of calcium and magnesium in fine root of deciduous trees(A hirsuta. Q. acutissima) were 3.6 and 1.7 times more in limited development district than in industrial estate, respectively, and those of coniferous trees(P. rigida, P. thunbergii) were 4.6 and 1.5 times more in Limited development district than in industrial estate, respectively. Also contents of calcium and magnesium in foliage of deciduous trees were 1.1 and 2.2 times more in limited development district than in industrial estate, respectively, and those of coniferous trees were 1.8 and 3.3 times more in limited development district, respectively. And contents of aluminium in fine root and foliage were nearly as same as in soil. 4. Ca/Al molar ratios in soil and fine root, which could be related with the dgree of soil acidification and Al toxicity on trees, were Less than 1 in all sites except Dongcheon, suggesting that the soil and fine root in the sites have high sensitivity to soil acidification and the decrease in nutrient uptake and root enlargement. The Ca/Al molar ratios in soil and fine root in coniferous forest were highly correlated with the soil pH one another. 5. Contents of Cu, Zn and Pb in soil, fine root and foliage were more in industrial estate than in limited development district in both deciduous and coniferous forests, however, oppositely contents of Mn and Cd in soil were more in limited development district than in industrial estate.

  • PDF

Optimization of Coho Salmon Hydrolysate Using Japanese Squid Liver and Its Properties (일본산 오징어 간을 이용한 은연어 가수분해물 제조의 최적화와 가수분해물의 특성)

  • Lee, Su-Seon;Park, Joo-Dong;Konno, Kunihiko;Choi, Yeung Joon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.11
    • /
    • pp.1759-1766
    • /
    • 2013
  • In this study, the optimal conditions for salmon hydrolysate using squid liver and compositional properties of hydrolysate were investigated. The optimal conditions were $55^{\circ}C$, pH 5.5 and 0.66~0.67% (w/w) in the ratio of squid liver to acidic and thermal treated salmon muscle. The free amino acid of hydrolysate from the acidic treated salmon muscle was higher than that of hydrolysate from the thermal treated salmon muscle, while the total amino acid and mineral were high in the acidic treated salmon muscle. Furthermore, cadmium of hydrolysate from the thermal denatured salmon muscle was below 2 ppm, and has an acceptable level as potential ingredient. The distribution of peptide molecular weight was 40.0% for 1.0~9.5 kDa, 6.7% for 0.5 kDa, and 47.4% of others in hydrolysate from the thermal treated salmon muscle. Both hydrolysates did not show any toxicity against the HepG2 cell line for up to $200{\mu}g/mL$.

Selenium Effect on the Frequency of SCEs Induced by Heavy Metals in Human Lymphocytes (Selenium이 mercury, cadmium 및 chromium에 의한 자매염색분체교환(姉妹染色分體交換)의 빈도(頻度)에 미치는 영향(影響))

  • Koh, Dai-Ha;Ki, No-Suk
    • Journal of Preventive Medicine and Public Health
    • /
    • v.23 no.1 s.29
    • /
    • pp.1-10
    • /
    • 1990
  • The protective effect of sodium selenite($Na_2SeO_3$) against the cytogenetic toxicity of heavy metals was investigated on human whole-blood cultures in relation to induction of sister chromatid exchange (SCE) in secondary metaphase chromosome. Methylmercury chloride($CH_3HgCl$), cadmium chloride($CdCl_2$), potassium dichromate($K_2Cr_2O_7$), and sodium selenite caused to the typically dose-dependent increase in sister chromatid exchanges (SCEs) by the concentrations ranging from $0.3{\mu}M\;to\;10{mu}M$. However, the inductions of sister chromatid exchanges by methylmercury chloride or cadmium chloride were inhibited by the simultaneous addition of sodium selenite $1.2{mu}M$. The frequencies of SCE were decreased to the level of control in the molar ratios as 2:1, 1:1, 1:2, and 1:4 of selenium selenite vs. methylmercury chloride, and as 1:1 and 1:2 of selenium selenite vs. cadmium chloride, while the frequencies of SCE induced by potassium dichromate were not changed by the addition of sodium selenite in culture condition. Mitotic indices were decreased in the higher concentrations of chemicals and not significantly changed by the simultaneous addition of sodium selenite to the culture condition containing each chemicals.

  • PDF