• Title/Summary/Keyword: CCTV영상

Search Result 603, Processing Time 0.028 seconds

Proposed CCPS model for comprehensive security management of CCTV (영상정보처리기기(CCTV)의 포괄적 보안관리를 위한 암호·인증·보호·체계(CCPS) 모델 제안)

  • Song, Won-Seok;Cho, Jun-Ha;Kang, Seong-Moon;Lee, MinWoo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.657-660
    • /
    • 2021
  • A video information processing system (CCTV) requires comprehensive administrative, physical, and technical security management to collect, transmit and store sensitive information. However, there are no regulations related to video information processing, certification methods for the technology used, and application standards suitable for security technology. In this paper, we propose a cryptography, certification, protection, system (CCPS) model that can protect the system by including encryption technology for application to the video information processing system and authentication measures for the technology used in the system configuration.

  • PDF

Development for Analysis Service of Crowd Density in CCTV Video using YOLOv4 (YOLOv4를 이용한 CCTV 영상 내 군중 밀집도 분석 서비스 개발)

  • Seung-Yeon Hwang;Jeong-Joon Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.3
    • /
    • pp.177-182
    • /
    • 2024
  • In this paper, the purpose of this paper is to predict and prevent the risk of crowd concentration in advance for possible future crowd accidents based on the Itaewon crush accident in Korea on October 29, 2022. In the case of a single CCTV, the administrator can determine the current situation in real time, but since the screen cannot be seen throughout the day, objects are detected using YOLOv4, which learns images taken with CCTV angle, and safety accidents due to crowd concentration are prevented by notification when the number of clusters exceeds. The reason for using the YOLO v4 model is that it improves with higher accuracy and faster speed than the previous YOLO model, making object detection techniques easier. This service will go through the process of testing with CCTV image data registered on the AI-Hub site. Currently, CCTVs have increased exponentially in Korea, and if they are applied to actual CCTVs, it is expected that various accidents, including accidents caused by crowd concentration in the future, can be prevented.

Preliminary study on car detection and tracking method using surveillance camera in tunnel environment for accident detection (터널 내 유고상황 자동 판정을 위한 선행 연구: CCTV를 이용한 차량의 탐지와 추적 기법 고찰)

  • Oh, Young-Sup;Shin, Hyu-Soung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.5
    • /
    • pp.813-827
    • /
    • 2017
  • Surveillance cameras installed in tunnels capture the various video frames effected by dynamic and variable factors. In addition, localizing and managing the cameras in tunnel is not affordable, and quality of capturing frame is effected by time. In this paper, we introduce a new method to detect and track the vehicles in tunnel by using surveillance cameras installed in a tunnel. It is difficult to detect the video frames directly from surveillance cameras due to the motion blur effect and blurring effect on lens by dirt. In order to overcome this difficulties, two new methods such as Differential Frame/Non-Maxima Suppression (DFNMS) and Haar Cascade Detector to track cars are proposed and investigated for their feasibilities. In the study, it was shown that high precision and recall values could be achieved by the two methods, which then be capable of providing practical data and key information to an automatic accident detection system in tunnels.

Violence detector using both CCTV videos and extracted skeleton images (CCTV 원본 영상과 추출된 스켈레톤 영상을 함께 이용하는 폭력 인식기)

  • Joo, Hyun-Seong;Kim, Yoo-Sung
    • Annual Conference of KIPS
    • /
    • 2020.11a
    • /
    • pp.838-841
    • /
    • 2020
  • 본 논문은 영상 속 폭력행위를 인식하기 위해 3 차원 컨벌루션을 활용하여 원본 영상과 스켈레톤(skeleton)영상으로부터 추출한 시각 및 움직임 정보를 동시에 활용하는 2-스트림 구조의 폭력상황 인식기를 제안한다. 제안된 폭력상황 인식기에서는 수평, 수직 방향의 큰 움직임이 많이 나타나는 폭력영상의 특성을 활용하기위해 각 방향의 특성을 독립적으로 학습할 수 있는 split-FAST 3차원 컨벌루션을 활용하고, 3 차원 Attention 을 적용하여 시각 및 움직임 정보 추출 시 영상의 중요지역을 중점적으로 반영하도록 함으로써 촬영 기기의 이동 또는 여러 사람의 뒤엉킴 등으로 영상의 시점 변화나 상황 변화가 잦은 경우에도 강인한 성능을 가질 수 있도록 하였다. 또한 기존의 연구들과 달리 비제약적인 환경에서 CCTV, 모바일 카메라 등으로 촬영된 실제 영상들로 구성된 RLVS 데이터셋을 학습 데이터로 사용함으로써 실제의 폭력 행위를 잘 인식할 수 있도록 하였다. RLVS 를 이용한 평가 실험에서 제안된 폭력상황 인식기가 약 92%의 인식 정확도를 얻었다.

Escape Route Prediction and Tracking System using Artificial Intelligence (인공지능을 활용한 도주경로 예측 및 추적 시스템)

  • Yang, Bum-suk;Park, Dea-woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.225-227
    • /
    • 2022
  • Now In Seoul, about 75,000 CCTVs are installed in 25 district offices. Each ward office in Seoul has built a control center for CCTV control and is building information such as people, vehicle types, license plate recognition and color classification into big data through 24-hour artificial intelligence intelligent image analysis. Seoul Metropolitan Government has signed MOUs with the Ministry of Land, Infrastructure and Transport, the National Police Agency, the Fire Service, the Ministry of Justice, and the military base to enable rapid response to emergency/emergency situations. In other words, we are building a smart city that is safe and can prevent disasters by providing CCTV images of each ward office. In this paper, the CCTV image is designed to extract the characteristics of the vehicle and personnel when an incident occurs through artificial intelligence, and based on this, predict the escape route and enable continuous tracking. It is designed so that the AI automatically selects and displays the CCTV image of the route. It is designed to expand the smart city integration platform by providing image information and extracted information to the adjacent ward office when the escape route of a person or vehicle related to an incident is expected to an area other than the relevant jurisdiction. This paper will contribute as basic data to the development of smart city integrated platform research.

  • PDF

A Conceptual Architecture and its Experimental Validation of CCTV-Video Object Activitization for Tangible Assets of Experts' Visual Knowledge in Smart Factories (고숙련자 공장작업지식 자산화를 위한 CCTV-동영상 객체능동화의 개념적 아키텍처와 실험적 검증)

  • Eun-Bi Cho;Dinh-Lam Pham;Kyung-Hee Sun;Kwanghoon Pio Kim
    • Journal of Internet Computing and Services
    • /
    • v.25 no.2
    • /
    • pp.101-111
    • /
    • 2024
  • In this paper, we propose a concpetual architecture and its implementation approach for contextualizing unstructured CCTV-video frame data into structured XML-video textual data by using the deep-learning neural network models and frameworks. Conclusively, through the conceptual architecture and the implementation approach proposed in this paper, we can eventually realize and implement the so-called sharable working and experiencing knowledge management platforms to be adopted to smart factories in various industries.

Video anomaly detection using multi-frame prediction error (다중 프레임 예측 에러를 활용한 영상 이상 탐지)

  • Kim, Yujun;Kim, Young-Gab
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.498-500
    • /
    • 2022
  • 공공 안전을 위한 영상 감시 시스템이 증가함에 따라 CCTV 관제사가 관제해야 할 영상의 수가 증가하고 있다. 점점 증가하는 관제 영상 수로 인해 CCTV 관제사는 수많은 영상 사이에서 발생하는 살인, 강도, 폭력 등 위급한 이상 상황을 놓치는 문제가 발생할 수 있다. 이러한 문제를 해결하기 위해 최근에는 영상에서 발생하는 이상 상황을 자동으로 탐지하고 CCTV 관제사에게 알려 관제 효율을 향상시키는 연구가 진행되고 있다. 본 논문은 영상에서 발생하는 이상 상황을 자동으로 탐지하기 위해 예측 기반 이상 탐지 방법에 다중 프레임 예측 에러를 활용해서 영상 이상 탐지 정확도를 향상시키는 방법을 제안한다. 결과적으로 제안한 방법을 사용함으로써 프레임 레벨 AUC가 Ped2 데이터 셋에서 92.70%에서 94.56%, Avenue 데이터셋에서 87.37%에서 89.17%로 상승하였다.

An OpenPose-based Child Abuse Decision System using Surveillance Video (감시 영상을 활용한 OpenPose 기반 아동 학대 판단시스템)

  • Yoo, Hye-Rim;Lee, Bong-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.3
    • /
    • pp.282-290
    • /
    • 2019
  • Recently child abuse has occurred frequently in educational institutions such as daycare center and kindergarten. Therefore, government made it mandatory to install CCTVs, but it is not easy to inspect the CCTV images. In this paper, we propose a model for judging child abuse using CCTV images. First of all, child abuse is a physical abuse of children by adults, thus a model for classifying adults and children is needed. The existing Haar scheme uses the frontal image to classify adults and children. However, the OpenPose allows to classify adults and children regardless of frontal and side image. In this research, a child abuse judgment model was designed and implemented by applying characteristics of adult and child posture when a child was abused. Since the implemented system utilizes the currently installed CCTV image, it is possible to monitor the child abuse in real time without any additional installation, which enables us to cope with the abuse promptly.

Threat Situation Determination System Through AWS-Based Behavior and Object Recognition (AWS 기반 행위와 객체 인식을 통한 위협 상황 판단 시스템)

  • Ye-Young Kim;Su-Hyun Jeong;So-Hyun Park;Young-Ho Park
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.4
    • /
    • pp.189-198
    • /
    • 2023
  • As crimes frequently occur on the street, the spread of CCTV is increasing. However, due to the shortcomings of passively operated CCTV, the need for intelligent CCTV is attracting attention. Due to the heavy system of such intelligent CCTV, high-performance devices are required, which has a problem in that it is expensive to replace the general CCTV. To solve this problem, an intelligent CCTV system that recognizes low-quality images and operates even on devices with low performance is required. Therefore, this paper proposes a Saying CCTV system that can detect threats in real time by using the AWS cloud platform to lighten the system and convert images into text. Based on the data extracted using YOLO v4 and OpenPose, it is implemented to determine the risk object, threat behavior, and threat situation, and calculate the risk using machine learning. Through this, the system can be operated anytime and anywhere as long as the network is connected, and the system can be used even with devices with minimal performance for video shooting and image upload. Furthermore, it is possible to quickly prevent crime by automating meaningful statistics on crime by analyzing the video and using the data stored as text.

Design of CCTV Enclosure Record Management System based on Blockchain

  • Yu, Kwan Woo;Lee, Byung Mun;Kang, Un Gu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.12
    • /
    • pp.141-149
    • /
    • 2022
  • In this paper, we propose a design of CCTV enlcosure record management system based on blockchain. Since CCTV video records are transferred to the control center through enclosure, it is very important to manage the enclosure to prevent modulation and damage of the video records. Recently, a smart enclosure monitoring system with real-time remote monitoring and opening and closing state management functions is used to manage CCTV enclosures, but there is a limitation to securing the safety of CCTV video records. The proposed system detect modulated record and recover the record through hash value comparison by distributed stored record in the blockchain. In addition, the integrity verification API is provided to ensure the integrity of enclosure record received by the management server. In order to verify the effectiveness of the system, the integrity verification accuracy and elapsed time were measured through experiments. As a result, the integrity of enclosure record (accuracy: 100%) was confirmed, and it was confirmed that the elapsed time for verification (average: 73 ms) did not affect monitoring.